?
E=cf
?[)
?
x1f
??
¥Bá
l ?àQ
1)
?/
f
??
?
Uu×¥Bá
l ??
(1) fn(x) =
q
x2 + 1n2;x 2 (?1;+1);
(2) fn(x) = sin xn;
i) x 2 (?l;l), ii) x 2 (?1;+1);
(3) fn(x) = nx1+nx;x 2 (0;1);
(4) fn(x) = 11+nx,
i) x 2 [a;+1);a > 0; ii) x 2 (0;+1);
(5) fn(x) = n2x 21+n3x3,
i) x 2 [a;+1);a > 0; ii) x 2 (0;+1);
(6) fn(x) = nx1+n+x;x 2 [0;1];
(7) fn(x) = xn1+xn,
i) x 2 [0;b);b < 1; ii) x 2 [0;1],
iii) x 2 [a;+1);a > 1;
(8) fn(x) = xn ?x2n;x 2 [0;1];
(9) fn(x) = xn ?xn+1;x 2 [0;1];
(10) fn(x) = xn ln xn;x 2 (0;1);
(11) fn(x) = 1n ln(1+e?nx);x 2 (?1;+1);
1
(12) fn(x) = e?(x?n)2;
i)x 2 [?l;l] ii) x 2 (?1;+1):
2
!fn(x)(n = 1;2;¢¢¢)[a;b]
μ?iOffn(x)g[a;b]
Bá
l
?p£fn(x)[a;b]
Báμ?.
3
!f(x)?l?(a;b)
7
fn(x) = [nf(x)]n (n = 1;2;¢¢¢):
p£ffn(x)g(a;b)
Bá
l ??f(x) .
4
!f(x)(a;b)=μ ??¥?
?f0(x)O
fn(x) = n[f(x+ 1n)?f(x)];
p£>uW[fi;fl](a < fi < fl < b)
ffn(x)gBá
l ??f0(x) .
5
!f1(x)[a;b]
ó
£ V?lf
??
fn+1 = [nf(x)]n (n = 1;2;¢¢¢):
p£ffn(x)g[a;b]
Bá
l ??
,.
6.ù?
?fi|
I
1′
H
fn(x) = nfixe?nx;n = 1;2;3¢¢¢
>uW[0;1]
l ?$>uW[0;1]Bá
l ?$
Plimn!1R10 fn(x)dx Vs
|/|K$
7£
ü?
fn(x) = nxe?nx2;(n = 1;2;¢¢¢)>uW[0;1]
l ??
Z 1
0
limn!1fn(x)dx 6= limn!1
Z 1
0
fn(x)dx:
8
!ffn(x)(n = 1;2;¢¢¢)g(?1;+1)Bá ??Offn(x)g
(?1;+1)Bá
l ??f(x) .p£f(x)(?1;+1)
Bá ??.
2
9
!ffn(x)g
^[a;b]
¥ ??f
?
Offn(x)g[a;b]Bá
l ?
?f(x) ?xn 2 [a;b](n = 1;2;¢¢¢)
?@limn!1xn = x0p£limn!1fn(xn) =
f(x0)
10
!ffn(x)g(a;b)=Bá
l ??f(x);x0 2 (a;b)O
limx?>x
0
fn(x) = an;(n = 1;2;¢¢¢):
£
ülimn!1an?limx!x
0
f(x)iOM?'
limn!1 limx!x
0
fn(x) = limx!x
0
limn!1fn(x)
11
!fn(x)(n = 1;2;¢¢¢)[a;b] ó
£ VOffn(x)g[a;b]Bá
l ?
?f(x)£
üf(x)[a;b] ó
£ V.
x2f
?[)
?¥Bá
l ??#?YE
1p/
f
?[)
?¥
l ?u×
'¥?Hq¥
(1)
1P
n=1
xn
1+x2n;
ó1P
n=1
n
n+1
? x
2x+1
¢n ;
?1P
n=1
(?1)n
2n?1
?1?x
1+x
¢n ;
?1P
n=1
1p
n ¢
1
1+a2nx2:
2??l)
?/
f
?[)
?¥Bá
l ??
(1)
1P
n=0
(1?x)xn;x 2 [0;1];
ó1P
n=1
(?1)n?1x2
(1+x2)n ;x 2 (?1;+1) .
3)
?/
f
?[)
?¥Bá
l ??
3
ò1P
n=1
sinnx
3pn4+x4;x 2 (?1;+1);
ó1P
n=1
x
1+n4x2;x 2 (?1;+1)
?1P
n=1
(?1)n(1?e?nx)
n2+x2 ; x 2 [0;+1);
?1P
n=1
sinx
x+2n;x 2 (?2;+1);
?1P
n=1
nx
1+n5x2;x 2 (?1;+1);
×1P
n=1
n2p
n!(x
n +x?n); 12 ?jxj? 2;
?1P
n=1
x2e?nx;x 2 (?1;+1);
ù1P
n=1
xn lnn x
n! ;x 2 [0;1];
ú1P
n=2
q
x2 + 1n2 ?
q
x2 + 1(n?1)2
?
; x 2 (?1;+1);
?1P
n=1
n
xn;jxj> r > 1;
ü1P
n=1
ln(1+nx)
nxn ; x 2 [a;+1);a > 1:
4)
?/
f
?[)
?¥Bá
l ??
(1)
1P
n=1
cos 2n…3p
n2+x2;x 2 (?1;+1);
(2)
1P
n=1
sinxsinnxp
n+x ;x 2 [0;2…];
(3)
1P
n=1
(?1)n
x+n ;x 2 (?1;+1);
(4)
1P
n=1
(?1)n
n+sinx;x 2 (?1;+1);
4
(5)
1P
n=1
2n sin 13nx;x 2 (0;+1);
(6)
1P
n=1
(?1)n(n?1)2
3pn2+ex ;jxj6 a;
(7)
1P
n=1
xnp
n;x 2 [?1;0];
(8)
1P
n=1
(?1)nx2n+12n+1;x 2 [?1;1].
5£
ü)
?1P
n=1
(?1)n?1 1n+x21?x(?1;+1)
1Bá
l ??
??xid '
l ? 7)
?1P
n=1
x2
(1+x2)n
ùx 2 (?1;+1)
'
l ?
?i?Bá
l ?.
6
!
?B[’n(x)?
^[a;b]
¥??f
??TP’n(x)[a;b]¥
?1 '
l ?*
1?)
?[a;b]
Bá
l ?.
7?1P
n=1
un(x)¥B?[jun(x)j? cn(x), x 2 X;iO1P
n=1
cun(x)X
B
á
l ?£
ü1P
n=1
un(x)X
9Bá
l ?O '
l ?.
x3???fff
?
?
?¥¥¥sss???ééé
1.ù?/
)
?
?V
U¥f
?·?uW
¥ ???
(1)
1P
n=0
xn;?1 < x < 1;
(2)
1P
n=1
xn
n ; ?1 ? x < 1;
(3)
1P
n=1
xn
n2; jxj? 1;
(4)
1P
n=1
1
(x+n)(x+n+1); 0 < x < +1;
(5)
1P
n=1
1
1+n2x2; jxj > 0;
5
(6)
1P
n=1
sinnx
npn ; jxj < 1;
(7)
1P
n=1
nx
1+n4x2; jxj > 0;
(8)
1P
n=1
x2
(1+x2)n; jxj < 1:
2p£f(x) =
1P
n=1
sinnx
n3(?1;+1)= ??iμ ???f
?.
3
!f(x) =
1P
n=1
e?nx
1+n2p£
òf(x)x > 0
??
óf(x)x > 0=íkQ V±.
4£
ü1P
n=1
ne?nx(0;+1)= ??.
5
!1P
n=1
un(x)(a;b)=Bá
l ?1P
n=1
un(x)(n = 1;2;¢¢¢)[a;b]
??
p£
ò1P
n=1
un(x)[a;b]
Bá
l ?
óS(x) =
1P
n=1
un(x)[a;b]
??.
6
!)
?1P
n=1
an(x)
l ?£
ü
lim
x?>0+
1X
n=1
an
nx =
1X
n=1
an:
7.£
ü
1?r2
1?2rcosx+r2 = 1+2
1X
n=1
an:
6
?jr < 1j
H? ?V7£
ü
Z …
…
1?r2
1?2rcosx+r2dx = 2…(jrj < 1):
8.¨μK-?? ?£
ü°D? ?.
9
!fxng
^(0;1)=¥B?
?
'0 < xn < 1Oxi 6= xj(i 6= j):
k
)
?f
?
f(x) =
1X
n=1
sgn(x?xn)
2n
(0;1)?¥ ???.
7