??c
?
L
?"
x2
L
L
L
?
?
?>>>uuuWWW¥¥¥???ááá???
1 ?¨μK-?? ?92£
ü?á?? ?94
4
U1o
^1£
ü[a;b]?iB?x0,
P¤x0¥?iB?
#×?
i
?
fxng?¥ík[?¨Q£E b
10
!f(x)
^(a;b)
¥jf
?Oμ
?p
£lim
x!a+
f(x); lim
x!b?
f(x)i
4
U|x0 = (a + b)=2,?i?f
?F(x) = f(x)?f(x0)x?x01(a;b)
¥9f
? b
12
!f(x)[0;+1)
??Oμ??ia 2 (?1;+1);f(x) = a
[0;+1)
oμμK??í?p£limx!+1f(x)i
4
U¨>uW**limx!+1f(x)¥K′ b
x3
L
?¥?!?
1
!f(x)(a;b) ??p£f(x)(a;b)Bá ??¥ 1Hq
^lim
x!a+
f(x)Dlim
x!b?
f(x)?i.
4
UA1??¨ O
l ?e ? b
2p£
?
xn = 1+ 1p2 +¢¢¢+ 1pn?n !1
H¥K?i
1
4
U?¨ O
l ?e ? b?i?8n > 0,μ
jx2n ?xnj = 1pn+1 + 1pn+2 +¢¢¢+ 1pn+n
? np2n
= 12
3 ?¨ O
l ?e ?)
?/
?
¥
l ??
(3) xn = 1? 12 + 13 ¢¢¢+(?1)n+1 1n.
4
U?¨ O
l ?e ? b?i?8n;p > 0,μ
jxn+p ?xnj
= j(?1)n+2 1pn+1 +(?1)n+3 1pn+2 +¢¢¢+(?1)n+p+1 1pn+pj
= j 1pn+1 ? 1pn+2 +¢¢¢+(?1)p+1 1pn+pj
= 1pn+1 ? 1pn+2 +¢¢¢+(?1)p+1 1pn+p
? 1pn+1
6£
ü/
K?i
(1) xn = n?1n+1 cos 2n…3 ;
4
UsY I
nxn¥
?0
x3k = 3k ?13k +1;
x3k+1 = 3k3k +2 cos 23…
¥K b
7
!f(x)(a;+1)
V?jf0(x)j??/?Olimx!+1f(x)i
p£limx!+1xf0(x) = 0
2
4
U?¨ O?′? ? b
8
!f(x)(?1;+1) V?Ojf0(x)j6 k < 1?óx0
7
xn+1 = f(xn)(n = 0;1;2;¢¢¢);
p£:
(1) limx!1xni
(2)
?K1x = f(x)¥?O
^·B¥
4
U(1)?¨ O
l ?e ? b?i?8n;p > 0,μ
jxn+1 ?xnj = jf(xn)?f(xn?1)j
= jf0(?n)(xn ?xn?1)j (?nxn?xn?1-W)
? kjxn ?xn?1j
? k2jxn?1 ?xn?2j
? ¢¢¢
? knjx1 ?x0j
V7μ
jxn+p ?xnj = j(xn+p ?xn+p?1)+¢¢¢+(xn+2 ?xn+1)j
? jxn+p ?xn+p?1j+¢¢¢+jxn+2 ?xn+1j
? (kn+p?1 +¢¢¢+kn+1)jx1 ?x0j
? k
n+1(1?kp)
1?k
? k
n+1
1?k:
x4
?>uW
??f
?¥?é
1
!f(x)[a;b]
??iOKv′?x0
^·B¥?
!xn 2 [a;b]
Plimn!1f(xn) = f(x0)p£limn!1xn = x0
3
4
U ?¨x256¥2
? b
3
!f(x)[a;b] ??f(a) < 0;f(b > 0)p£i? 2 (a;b)
Pf(?) = 0Of(x) > 0(? < x 6 b):
4
U
!
A = fxjx 2 [a;b];?t 2 (t;b]
H,μf(t) > 0g
5"?Ad bOμ/? b ?¨??e ??Aμ/??£
ü??/??
'1
?p¥?.
x5 V?
1?/
f
?uW[0;1]
¥ V?
(1) f(x)[0;1]
μ?? ???1x = 1n(n = 1;2;¢¢¢)
4
U ?¨1n¥
l ?? b
3
!f(x);g(x)?[a;b]
V£
ü
M(x) = max(f(x);g(x));m(x) = min(f(x);g(x))
[a;b]
9
^ V¥
4
U
max(f(x);g(x)) = (f(x)+g(x))+jf(x)?g(x)j2
min(f(x);g(x)) = (f(x)+g(x))?jf(x)?g(x)j2
8?f
?f(x)[A;B] V£
ü
lim
h!0
Z b
a
jf(x+h)?f(x)jdx = 0;
4
?A < a < b < B (?B?é?1s¥ ???)
4
U ?¨55¥2
? b
9
!f(x) > 0;f00(x) 6 0;?ix 2 [a;b]? ?p£
f(x) 6 2b?a
Z b
a
f(x)dx:
4
U??f
?
^/j¥¥
?[
f(x)?f(a)
x?a ?
f(b)?f(a)
b?a
11
!f(x)[a;b] Vp£ i ??f
??
’n(x);n = 1;2;¢¢¢
P
limx!1
Z b
a
’n(x)dx =
Z b
a
f(x)dx:
4
U ?¨55¥2
? b
5