??c ? L ?" x2 L L L ? ? ?>>> u u uWWW¥¥¥???ááá??? 1 ?¨μK-?? ?92£ ü?á?? ?94 4 U1o ^1£ ü[a;b]?iB?x0, P¤x0¥ ?iB? #×? i ? fxng?¥í k[?¨Q£Eb 10 !f(x) ^(a;b) ¥jf ? Oμ ? p £lim x!a+ f(x); lim x!b? f(x)i 4 U |x0 = (a + b)=2,?i?f ?F(x) = f(x)?f(x0)x?x01(a;b) ¥9f ?b 12 !f(x)[0;+1)  ?? Oμ? ?ia 2 (?1;+1);f(x) = a [0;+1) oμμK??í? p£limx!+1f(x)i 4 U¨> uW**limx!+1f(x)¥K′b x3 L ?¥?!? 1 !f(x)(a;b) ?? p£f(x)(a;b)Bá ??¥ 1Hq ^lim x!a+ f(x)Dlim x!b? f(x)?i. 4 UA1??¨ O l ?e ?b 2 p£ ? xn = 1+ 1p2 +¢¢¢+ 1pn?n !1 H¥K?i 1 4 U?¨ O l ?e ?b?i?8n > 0,μ jx2n ?xnj = 1pn+1 + 1pn+2 +¢¢¢+ 1pn+n ? np2n = 12 3 ?¨ O l ?e ?) ?/  ? ¥ l ?? (3) xn = 1? 12 + 13 ¢¢¢+(?1)n+1 1n. 4 U?¨ O l ?e ?b?i?8n;p > 0,μ jxn+p ?xnj = j(?1)n+2 1pn+1 +(?1)n+3 1pn+2 +¢¢¢+(?1)n+p+1 1pn+pj = j 1pn+1 ? 1pn+2 +¢¢¢+(?1)p+1 1pn+pj = 1pn+1 ? 1pn+2 +¢¢¢+(?1)p+1 1pn+p ? 1pn+1 6£ ü/ K?i (1) xn = n?1n+1 cos 2n…3 ; 4 UsY I nxn¥ ?0  x3k = 3k ?13k +1; x3k+1 = 3k3k +2 cos 23… ¥Kb 7 !f(x)(a;+1)  V?jf0(x)j??/? Olimx!+1f(x)i p£limx!+1xf0(x) = 0 2 4 U?¨ O?′? ?b 8 !f(x)(?1;+1) V? Ojf0(x)j6 k < 1 ?óx0 7 xn+1 = f(xn)(n = 0;1;2;¢¢¢); p£: (1) limx!1xni (2)  ?K1x = f(x)¥? O ^·B¥ 4 U(1)?¨ O l ?e ?b?i?8n;p > 0,μ jxn+1 ?xnj = jf(xn)?f(xn?1)j = jf0(?n)(xn ?xn?1)j (?nxn?xn?1-W) ? kjxn ?xn?1j ? k2jxn?1 ?xn?2j ? ¢¢¢ ? knjx1 ?x0j V7μ jxn+p ?xnj = j(xn+p ?xn+p?1)+¢¢¢+(xn+2 ?xn+1)j ? jxn+p ?xn+p?1j+¢¢¢+jxn+2 ?xn+1j ? (kn+p?1 +¢¢¢+kn+1)jx1 ?x0j ? k n+1(1?kp) 1?k ? k n+1 1?k: x4 ?> uW  ??f ?¥?é 1 !f(x)[a;b]  ??i OKv′?x0 ^·B¥? !xn 2 [a;b]  Plimn!1f(xn) = f(x0) p£limn!1xn = x0 3 4 U ?¨x256¥2 ?b 3 !f(x)[a;b] ??f(a) < 0;f(b > 0) p£i? 2 (a;b) Pf(?) = 0 Of(x) > 0(? < x 6 b): 4 U ! A = fxjx 2 [a;b];?t 2 (t;b] H,μf(t) > 0g 5"?Ad b Oμ/?b ?¨ ??e ??Aμ/ ??£ ü??/ ?? '1 ? p¥?. x5 V? 1 ?/ f ? uW[0;1] ¥ V? (1) f(x)[0;1] μ?? ???1x = 1n(n = 1;2;¢¢¢) 4 U ?¨1n¥ l ??b 3 !f(x);g(x)?[a;b]  V£ ü M(x) = max(f(x);g(x));m(x) = min(f(x);g(x)) [a;b] 9 ^ V¥ 4 U max(f(x);g(x)) = (f(x)+g(x))+jf(x)?g(x)j2 min(f(x);g(x)) = (f(x)+g(x))?jf(x)?g(x)j2 8 ?f ?f(x)[A;B] V£ ü lim h!0 Z b a jf(x+h)?f(x)jdx = 0; 4 ?A < a < b < B (?B?é?1s¥ ???) 4 U ?¨55¥2 ?b 9 !f(x) > 0;f00(x) 6 0; ?ix 2 [a;b]? ? p£ f(x) 6 2b?a Z b a f(x)dx: 4 U??f ? ^/j¥¥ ?[ f(x)?f(a) x?a ? f(b)?f(a) b?a 11 !f(x)[a;b] V p£ i ??f ?? ’n(x);n = 1;2;¢¢¢  P limx!1 Z b a ’n(x)dx = Z b a f(x)dx: 4 U ?¨55¥2 ?b 5