?
1c±
D±s
x1±
àQ#9
?
1p?tLy = x2A(1;1)??B(?2;4)?¥MLZ??ELZ?
2?S = vt? 12gt2p
1t = 1;t = 1+¢t-W¥ü (
?
!¢t = 1;0:1;0:01
2t = 1¥
§
H
?
3
k??wLy = lnx't?¥MLü??/
°L
1y = x?1
2y = 2x?3
4
!f(x) =
8
<
:
x2;x ? 3
ax+b;x < 3;
k??a;b¥′
Pf(x)x = 3) V?
5p/
wL·??P¥MLZ??ELZ?
1y = x24 ;P(2;1)
2y = cosx;P(0;1)
6p/
f
?¥?f
?.
1f(x) = jxj3
2f(x) =
8
<
:
x+1; x ? 0;
1; x < 0;
1
7
!f
?f(x) =
8
<
:
xm sin 1x; x 6= 0
0; x = 0
m1??
?
kù
1m???′
Hf(x)x = 0 ??
2m???′
Hf(x)x = 0 V?
3m???′
Hf0(x)x = 0 ??
8
!g(0) = g0(0) = 0f(x) =
8<
:
g(x)sin 1x; x 6= 0;
0; x = 0:
pf0(0)
9£
ü?f0(x0)i5
lim
¢x!0
f(x0 +¢x)?f(x0 ?¢x)
2¢x = f
0(x0)
10
!f(x)
^?l(?1;+1)
¥f
?O?ix1;x2 2 (?1;+1)
μ
f(x1 +x2) = f(x1)f(x2):
?f0(0) = 1£
ü?ix 2 (?1;+1)μf0(x) = f(x)
11
!f(x)
^}f
?Of0(0)i£
üf0(0) = 0
12
!f(x)
^f
?Of0(x0) = 3pf0(?x0).
13¨?l£
ü V?¥}f
?¥?f
?
^f
? V?¥f
?
¥?f
?
^}f
?
14p/
f
?¥?f
?
1y = x2 sinx
2y = xcosx+3x2
3y = xtanx?7x+6
2
4y = ex sinx?7cosx+5x2
5y = 4px+ 1x ?2x3
6y = 3x+5px+ 7x3
7y = 1+x21?x2
8y = 11+x+x2
9y = x(1?x)(2?x)
10y = 11+px ? 11?px
11y = 1+
px
1?px
12y = 13px + 3px
13y = x3 lnx? 1nxn
14y = cosxx4 ln 1x
15y = (x+ 1x)lnx
16y = xcosx?lnxx+1
17y = 1x+cosx
18y = xsinx+cosxxsinx?cosx
19y = xex?1sinx
20y = xsinxlnx
15p/
ˉ?f
?¥?f
?
1y = (x3 ?4)3
3
2y = x(a2 +x2)pa2 ?x2
3y = xpa2?x2
4y = 3
q
1+x3
1?x3
5y = ln(lnx)
6y = 12 lnflfla+xa?xflfl
7y = ln(x+pa2 +x2)
8y = lntan x2
9y = cos(cospx)
10y = cos3 x?cos3x
11y = 1p2…e?3x2
12y = arcsin(sinxcosx)
13y = arctan 2x1?x2
14y = e?x2+2x
15y = ln
q
(x+2)(x+3)
x+1
16y = e2x sin3x+ x22
17y = e?kx sin!x1+x (k;!1è
?
18y = xpa2 ?x2 + xpa2?x2
19y = sinn xcosnx
20y = ln
p1+x?p1?x
p1+x+p1?x
4
16¨
?p?Ep/
f
?¥?f
?
1y = x
q
1?x
1+x
2y = x21?x
q
1+x
1+x+x2
3y = (x+p1+x2)n
4y = xx;(x > 0)
5y = xlnx;(x > 0)
6y = (1+x)1x;(x > 0)
7y = xtanx;(x > 0)
8y = asinx;(a > 0)
17
!f(x)
^x Vp?¥f
?pdydx
1y = f(x2)
2y = f(ex)ef(x)
3y = f(f(f(x)))
18
!’(x)??(x)
^x Vp?¥f
?pdydx
1y = p’2(x)+?2(x)
2y = arctan ’(x)?(x)(?(x) 6= 0)
3y = ’(x)p?(x)(?(x) > 0;’(x) 6= 0)
4y = log’(x) ?(x) (?(x) > 0;’(x) > 0;’(x) 6= 1)
19p/
f
?¥?f
?
5
1y = eax(cosbx+sinbx)
2y = xarctanx? 12 ln(1+x2)
3y = arctan
p1?x2?1
x +arctan
2x
1?x2
4y = arctan(tan2 x)
5y = (ab)x(bx)a(xa)b(a;b > 0)
6y = x2pa2 ?x2 + a22 arcsin xa(a > 0)
7y = x2pa2 +x2 + a22 ln
flfl
flx+
pa2 +x2flfl
fl(a > 0)
8y = ln(arccos 1px)
9y = xaa +axa +aax(a > 0)
10y = 16 ln (x+1)2x2?x+1 + 1p3 arctan 2x?1p3
x2±sàQ#9
?
1p/
f
?·??¥±s
1y = anxn +an?1xn?1 +¢¢¢+a1x+a0pdy(0);dy(1)
2y = secx+tanxpdy(0);dy(…4)?dy(…)
3y = 1a arctan xapdy(0);dy(a)
4y = 1x + 1x2pdy(0:1);dy(0:01)
2p/
f
?¥±s
1y = x1?x2
2y = xlnx?x
6
3y = px+lnx? 1px
4y = arcsinp1?x2
5y = esinx2
6y = lnflfltan(x2 + …4)flfl
3
!u;v
^x¥ V±f
?pdy
1y = arctan uv
2y = lnpu2 +v2
3y = lnsin(u+v)
4y = 1pu2+v2
4p/
f
?¥±sdy
1y = sin2 t;t = ln(3x+1)
2y = ln(3t+1);t = sin2 x
3y = e3u;u = 12 lnt;t = x3 ?2x+5
4y = arctanu;u = (lnt)2;t = 1+x2 ?cotx
x3?f
?D?
?Z?±sE
1.p/
?f
?¥?
?dydx
1x2a2 + y2b2 = 1(a;b1è
?)
2y2 = 2px(p1è
?)
3x2 +xy +y2 = a2(a1è
?)
7
4x3 +y3 ?xy = 0
5y = x+ 12 siny
6x23 +y23 = a23(a1è
?)
7y = cos(x+y)
8y = x+arctany
9y = 1?ln(x+y)+ey
10arctan yx = lnpx2 +y2
2p/
?
?Z?¥?
?
1
8
<
:
x = t1+t
y = 1?t1+t
2
8
<
:
x = sin2 t
y = cos2 t
3
8
<
:
x = e2t cos2 t
y = e2t sin2 t
4
8<
:
x = a(lntan t2 +cost)
y = asint
3pf
?y = y(x)·??¥?
?
1y = cosx+ 12 siny;(…2;0)
2yex +lny = 1;(0;1)
3
8
<
:
x = t?sint;
y = 1?cost;
t = …2;…)
8
4
8
<
:
x = 1?t2;
y = t?t3;
t =
p2
2 ;
p3
3)
4B????
'110m
?¥????14m.
19?
£
Hp
£¥8V
£
?úh¥M?
q
2p8V??
????R¥M?
q
5
!x = acos3 t;y = asin3 t
1py0(t)
2£
üwL¥ML$USà
??¥é1B?è
?
6£
üwL
8
<
:
x = a(cost+tsint)
y = a(sint?tcost)
?B?¥EL?e?¥ ?
???a.
x4ú¨±
Dú¨±s
1.p/
f
?·??¥ú¨?
?
1f(x) = 3x3 +4x2 ?5x?9pf00(1);f000(1);f(4)(1)
2f(x) = xp1+x2;pf00(0);f00(1);f00(?1)
2p/
f
?¥ú¨?
?
1y = xlnxpy00
2y = e?x2py000
3y = x2e2x;py(n)
4y = arcsinxp1?x2py(n)
9
5y = x5 cosxpy(50)
6y = x3ex?e?x2py(30)
3p/
f
?¥n¨?
?
1y = ax
2y = lnx
4p/
f
?¥n¨?
?
1y = 1x(1?2x)
2y = sin2 x
3y = 1x2?2x?8
4y = exx
5y = ln x+21?x
6y = 2x lnx
5
!f(x)¥ò¨?
?ipy00#y000
1y = f(x2)
2y = f(1x)
3y = f(e?x)
4y = f(lnx)
5y = f(f(x))
6?f(x) =
8<
:
e? 1x2;x 6= 0
0;x = 0
£
üf(n)(0) = 0
10
7p/
f
?¥=¨±s
1y = 1px
2y = xarctanx
3y = f(u) = eu;u = ’(x) = x2
8p/
f
?¥?¨±s
1
!u(x) = lnx;v(x) = ex;pd3(uv);d3(uv)
2
!u(x) = ex2;v(x) = cos2xpd3(uv);d(uv)
9p/
?
?Z?¥=¨?
?
1
8
<
:
x = 2t?t2
y = 3t?t3
2
8
<
:
x = acost
y = asint
3
8
<
:
x = a(t?sint)
y = a(1?cost)
4
8<
:
x = et cost
y = et sint
5
8<
:
x = acos3 t
y = asin3 t
6
8
<
:
x = f0(t)
y = tf0(t)?f(t)
10p/
?f
?¥=¨?
?d2ydx2
11
1ex+y ?xy = 0
2x3 +y3 ?3axy = 0
3y2 +2lny ?x4 = 0
11
!f
?y = f(x)?x=¨ V?Of0(x) 6= 0?f(x)iQf
?x = f?1(y)
kp(f?1)00(y)
12
!y = c1 sinx+c2 cosx£
üy
?@Z?y00 +y = 0
13
!y = arctanx
1£
üy
?@Z?(1+x2)y00 +2xy0 = 0
2py(n)(0)
14
!y = y(x)iQf
?O
?@Z?
d2y
dx2 +(
dy
dx)
3 = 0
£
üQf
?x = x(y)
?@d2xdy2 = 1iO?NpB?y = y(x)
12