? 1c± D±s x1± à Q# 9 ? 1 p ?tLy = x2A(1;1)??B(?2;4)?¥ MLZ??ELZ? 2 ?S = vt? 12gt2 p  1t = 1;t = 1+¢t-W¥ ü ( ? !¢t = 1;0:1;0:01  2t = 1¥ § H ? 3 k ?? wLy = lnx 't?¥ ML ü??/ °L  1y = x?1  2y = 2x?3 4 !f(x) = 8 < : x2;x ? 3 ax+b;x < 3; k ??a;b¥′ Pf(x)x = 3) V? 5 p/  wL·??P¥ MLZ??ELZ?  1y = x24 ;P(2;1)  2y = cosx;P(0;1) 6 p/ f ?¥?f ?.  1f(x) = jxj3  2f(x) = 8 < : x+1; x ? 0; 1; x < 0; 1 7 !f ?f(x) = 8 < : xm sin 1x; x 6= 0 0; x = 0  m1?? ? kù 1m???′ Hf(x)x = 0 ??  2m???′ Hf(x)x = 0 V?  3m???′ Hf0(x)x = 0 ?? 8 !g(0) = g0(0) = 0f(x) = 8< : g(x)sin 1x; x 6= 0; 0; x = 0: pf0(0) 9£ ü ?f0(x0)i5 lim ¢x!0 f(x0 +¢x)?f(x0 ?¢x) 2¢x = f 0(x0) 10 !f(x) ^?l(?1;+1) ¥f ? O ?ix1;x2 2 (?1;+1) μ f(x1 +x2) = f(x1)f(x2): ?f0(0) = 1£ ü ?ix 2 (?1;+1)μf0(x) = f(x) 11 !f(x) ^ }f ? Of0(0)i£ üf0(0) = 0 12 !f(x) ^ f ? Of0(x0) = 3 pf0(?x0). 13¨?l£ ü V?¥ }f ?¥?f ? ^ f ? V?¥ f ? ¥?f ? ^ }f ? 14 p/ f ?¥?f ?  1y = x2 sinx  2y = xcosx+3x2  3y = xtanx?7x+6 2  4y = ex sinx?7cosx+5x2  5y = 4px+ 1x ?2x3  6y = 3x+5px+ 7x3  7y = 1+x21?x2  8y = 11+x+x2  9y = x(1?x)(2?x)  10y = 11+px ? 11?px  11y = 1+ px 1?px  12y = 13px + 3px  13y = x3 lnx? 1nxn  14y = cosxx4 ln 1x  15y = (x+ 1x)lnx  16y = xcosx?lnxx+1  17y = 1x+cosx  18y = xsinx+cosxxsinx?cosx  19y = xex?1sinx  20y = xsinxlnx 15 p/ ˉ?f ?¥?f ?  1y = (x3 ?4)3 3  2y = x(a2 +x2)pa2 ?x2  3y = xpa2?x2  4y = 3 q 1+x3 1?x3  5y = ln(lnx)  6y = 12 lnflfla+xa?xflfl  7y = ln(x+pa2 +x2)  8y = lntan x2  9y = cos(cospx)  10y = cos3 x?cos3x  11y = 1p2…e?3x2  12y = arcsin(sinxcosx)  13y = arctan 2x1?x2  14y = e?x2+2x  15y = ln q (x+2)(x+3) x+1  16y = e2x sin3x+ x22  17y = e?kx sin!x1+x (k;!1è ?  18y = xpa2 ?x2 + xpa2?x2  19y = sinn xcosnx  20y = ln p1+x?p1?x p1+x+p1?x 4 16¨ ? p?E p/ f ?¥?f ?  1y = x q 1?x 1+x  2y = x21?x q 1+x 1+x+x2  3y = (x+p1+x2)n  4y = xx;(x > 0)  5y = xlnx;(x > 0)  6y = (1+x)1x;(x > 0)  7y = xtanx;(x > 0)  8y = asinx;(a > 0) 17 !f(x) ^x V p?¥f ? pdydx  1y = f(x2)  2y = f(ex)ef(x)  3y = f(f(f(x))) 18 !’(x)??(x) ^x V p?¥f ? pdydx  1y = p’2(x)+?2(x)  2y = arctan ’(x)?(x)(?(x) 6= 0)  3y = ’(x)p?(x)(?(x) > 0;’(x) 6= 0)  4y = log’(x) ?(x) (?(x) > 0;’(x) > 0;’(x) 6= 1) 19 p/ f ?¥?f ? 5  1y = eax(cosbx+sinbx)  2y = xarctanx? 12 ln(1+x2)  3y = arctan p1?x2?1 x +arctan 2x 1?x2  4y = arctan(tan2 x)  5y = (ab)x(bx)a(xa)b(a;b > 0)  6y = x2pa2 ?x2 + a22 arcsin xa(a > 0)  7y = x2pa2 +x2 + a22 ln flfl flx+ pa2 +x2flfl fl(a > 0)  8y = ln(arccos 1px)  9y = xaa +axa +aax(a > 0)  10y = 16 ln (x+1)2x2?x+1 + 1p3 arctan 2x?1p3 x2±sà Q# 9 ? 1 p/ f ?·??¥±s  1y = anxn +an?1xn?1 +¢¢¢+a1x+a0 pdy(0);dy(1)  2y = secx+tanx pdy(0);dy(…4)?dy(…)  3y = 1a arctan xa pdy(0);dy(a)  4y = 1x + 1x2 pdy(0:1);dy(0:01) 2 p/ f ?¥±s  1y = x1?x2  2y = xlnx?x 6  3y = px+lnx? 1px  4y = arcsinp1?x2  5y = esinx2  6y = lnflfltan(x2 + …4)flfl 3 !u;v ^x¥ V±f ? pdy  1y = arctan uv  2y = lnpu2 +v2  3y = lnsin(u+v)  4y = 1pu2+v2 4 p/ f ?¥±sdy  1y = sin2 t;t = ln(3x+1)  2y = ln(3t+1);t = sin2 x  3y = e3u;u = 12 lnt;t = x3 ?2x+5  4y = arctanu;u = (lnt)2;t = 1+x2 ?cotx x3?f ?D? ?Z?±sE 1. p/ ?f ?¥? ?dydx  1x2a2 + y2b2 = 1(a;b1è ?)  2y2 = 2px(p1è ?)  3x2 +xy +y2 = a2(a1è ?) 7  4x3 +y3 ?xy = 0  5y = x+ 12 siny  6x23 +y23 = a23(a1è ?)  7y = cos(x+y)  8y = x+arctany  9y = 1?ln(x+y)+ey  10arctan yx = lnpx2 +y2 2 p/ ? ?Z?¥? ?  1 8 < : x = t1+t y = 1?t1+t   2 8 < : x = sin2 t y = cos2 t   3 8 < : x = e2t cos2 t y = e2t sin2 t   4 8< : x = a(lntan t2 +cost) y = asint  3 pf ?y = y(x)·??¥? ?  1y = cosx+ 12 siny;(…2;0)  2yex +lny = 1;(0;1)  3 8 < : x = t?sint; y = 1?cost; t = …2;…) 8  4 8 < : x = 1?t2; y = t?t3; t = p2 2 ; p3 3) 4B??? ?  '110m  ?¥????14m.  19 ? £ H p £¥8V £ ?úh¥M? q  2 p8V ? ? ????R¥M? q 5 !x = acos3 t;y = asin3 t  1 py0(t)  2£ ü wL¥ ML$USà ??¥é1B?è ? 6£ ü wL 8 < : x = a(cost+tsint) y = a(sint?tcost)  ?B?¥EL?e?¥  ? ???a. x4ú¨± Dú¨±s 1. p/ f ?·??¥ú¨? ?  1f(x) = 3x3 +4x2 ?5x?9 pf00(1);f000(1);f(4)(1)  2f(x) = xp1+x2; pf00(0);f00(1);f00(?1) 2 p/ f ?¥ú¨? ?  1y = xlnx py00  2y = e?x2 py000  3y = x2e2x; py(n)  4y = arcsinxp1?x2 py(n) 9  5y = x5 cosx py(50)  6y = x3ex?e?x2 py(30) 3 p/ f ?¥n¨? ?  1y = ax  2y = lnx 4 p/ f ?¥n¨? ?  1y = 1x(1?2x)  2y = sin2 x  3y = 1x2?2x?8  4y = exx  5y = ln x+21?x  6y = 2x lnx 5 !f(x)¥ò¨? ?i py00#y000  1y = f(x2)  2y = f(1x)  3y = f(e?x)  4y = f(lnx)  5y = f(f(x)) 6 ?f(x) = 8< : e? 1x2;x 6= 0 0;x = 0 £ üf(n)(0) = 0 10 7 p/ f ?¥=¨±s  1y = 1px  2y = xarctanx  3y = f(u) = eu;u = ’(x) = x2 8 p/ f ?¥ ?¨±s  1 !u(x) = lnx;v(x) = ex; pd3(uv);d3(uv)  2 !u(x) = ex2;v(x) = cos2x pd3(uv);d(uv) 9 p/ ? ?Z?¥=¨? ?  1 8 < : x = 2t?t2 y = 3t?t3   2 8 < : x = acost y = asint   3 8 < : x = a(t?sint) y = a(1?cost)   4 8< : x = et cost y = et sint   5 8< : x = acos3 t y = asin3 t   6 8 < : x = f0(t) y = tf0(t)?f(t)  10 p/ ?f ?¥=¨? ?d2ydx2 11  1ex+y ?xy = 0  2x3 +y3 ?3axy = 0  3y2 +2lny ?x4 = 0 11 !f ?y = f(x)?x=¨ V? Of0(x) 6= 0 ?f(x)iQf ?x = f?1(y) k p(f?1)00(y) 12 !y = c1 sinx+c2 cosx£ üy ?@Z?y00 +y = 0 13 !y = arctanx  1£ üy ?@Z?(1+x2)y00 +2xy0 = 0  2 py(n)(0) 14 !y = y(x)iQf ? O ?@Z? d2y dx2 +( dy dx) 3 = 0 £ üQf ?x = x(y) ?@d2xdy2 = 1i O?N pB?y = y(x) 12