? E ?c a) ? x1 a) ?¥ l ???D l ? u× 1. p/ ò a) ?¥ l ?×. (1) 1P n=1 (2x)n n! ; (2) 1P n=1 ln(x+1) n+1 x n+1; (3) 1P n=1 [(n+1n )nx]n; (4) 1P n=1 xn2 2n ; (5) 1P n=1 [3+(?1)n] n x n; (6) 1P n=1 3n+(?2)n n (x+1) n; (7) 1P n=1 (2n)!! (2n+1)!!x n; (8) 1P n=1 (1+ 1n)?n62xn; (9) 1P n=1 (?1)n n npn x n; (10) 1P n=1 xn 5n+7n; (11) 1P n=1 (n!)2 (2n)!x n; (12) 1P n=1 (1+ 12 +¢¢¢+ 1n)xn; (13) 1P n=1 nxn; 1 (14) 1P n=1 (x?2)2n?1 (2n?1)! ; (15) 1P n=1 an2xn (0 < a < 1); (16) 1P n=1 xn np: 2 ! a) ?1P n=0 anxn¥ l ???1RP n=0 1bnxn¥ l ???1Q) ?/ ) ?¥ l ??? (1) 1P n=1 anx2n (2) 1P n=1 (an +bn)xn (3) 1P n=0 anbnxn . 3 !1P n=0 akxk1?M (n = 0;1;:::;x1 > 0) p£?0 < x < x1 H μ (1) 1P n=0 anxn l ? (2) flfl flfl 1P n=0 anxn flfl flfl? M. x2 a a a))) ? ? ?¥¥¥???ééé 1 !f(x) = 1P n=0 anxn?jxj < r H l ? * 1?1P n=0 an n+1r n+1 l ? Hμ Z r 0 f(x)dx = 1X n=0 an n+1r n+1 ? ?1P n=0 anxn?x = r H ^? l ?. 2. ?¨ 5£ üR10 1n(1?x)x dx = ? 1P n=1 1 n2. 2 3.¨?[±s?[s p/ ) ?¥? (1) 1P n=1 xn n ; (2) 1P n=1 nxn ; (3) 1P n=1 n(n+1)xn ; (4) 1P n=1 (?1)n?1 n(2n?1)x 2n ; (5) 1P n=1 n2+1 n!2n x n ; (6) 1P n=1 (?1)nn3 (n+1)! x n ; (7) 1P n=0 x4n?1 4n+1; (8) 1P n=0 (2n+1 ?1)xn ; (9) 1P n=1 n2xn?1 ; (10) 1P n=1 (2n+1)2 n! x 2n+1 . 4. p/ ) ?¥? (1) 1P n=1 2n?1 2n ; (2) 1P n=1 1 n(2n+1) . 5.£ ü (1) 1P n=0 x4n (4n)! ?@Z?y (4) = y 3 (2) 1P n=0 xn (n!)2 ?@Z?xy 00 +y0 ?y = 0 . 6 !f(x) ^ a) ?1P n=0 anxn(?R;R) ¥?f ? ?f(x)1 f ?5) ???C Q a¥[ ?f(x)1 }f ?5) ???C } Q a¥[. 7 !f(x) = 1P n=1 xn n2 ln(1+n): (1) p£f(x)[?1;1] ??f0(x)(?1;1) = ?? (2) p£f(x)?x = ?1 V? (3) p£lim x!1? f0(x) = +1 (4) p£f(x)?x = 1? V?. x3fff ? ? ?¥¥¥ a a a))) ? ? ?ZZZ 7 7 7 1. ?¨'?f ?¥Z T|/ f ?Z 71 ? X ? ) ?i a ü l ? uW. (1) 1a?x;a 6= 0; (2) 1(1+x)2; (3) 1(1+x)3; (4) cos2 x ; (5) sin3 x ; (6) xp1?3x; (7) (1+x)e?x ; 4 (8) ln(x+p1+x2); (9) 11?3x+2x2; (10) arcsinx; (11) ln(1+x+x2); (12) xarctanx?lnp1+x2; (13) Rx0 sintt dt; (14) Rx0 cost2dt: 2 ?¨ a) ?Me p/ f ?¥ ? X ? Z 7 T (1) ln(1+x2)1+x ; (2) (arctanx)2 ; (3) ln2(1?x): 3|/ f ?·??x0Z 71 ü à) ? (1) 1a?x;x0 = b(6= a); (2) ln 12+2x+x2;x0 = ?1; (3) lnx;x0 = 2; (4) ex;x0 = 1: 4Z 7ddx(ex?1x )1x¥ a) ?iw1 = 1P n=1 n (n+1)!: 5 k|f(x) = lnxZ 7?x?1x+1¥ a) ?. 6 !f ?f(x) uW(a;b) =¥ò¨? ?Báμ?'iM > 0 5 B Mx 2 (a;b)μ jf(n)(x)j? M;n = 1;2;:::; £ ü(a;b) = ?i?xDx0μ f(x) = 1X n=0 f(n)(x0) n! (x?x0) 2: 6