?
E?c
a)
?
x1
a)
?¥
l ???D
l ?u×
1.p/
ò
a)
?¥
l ?×.
(1)
1P
n=1
(2x)n
n! ;
(2)
1P
n=1
ln(x+1)
n+1 x
n+1;
(3)
1P
n=1
[(n+1n )nx]n;
(4)
1P
n=1
xn2
2n ;
(5)
1P
n=1
[3+(?1)n]
n x
n;
(6)
1P
n=1
3n+(?2)n
n (x+1)
n;
(7)
1P
n=1
(2n)!!
(2n+1)!!x
n;
(8)
1P
n=1
(1+ 1n)?n62xn;
(9)
1P
n=1
(?1)n
n npn x
n;
(10)
1P
n=1
xn
5n+7n;
(11)
1P
n=1
(n!)2
(2n)!x
n;
(12)
1P
n=1
(1+ 12 +¢¢¢+ 1n)xn;
(13)
1P
n=1
nxn;
1
(14)
1P
n=1
(x?2)2n?1
(2n?1)! ;
(15)
1P
n=1
an2xn (0 < a < 1);
(16)
1P
n=1
xn
np:
2
!
a)
?1P
n=0
anxn¥
l ???1RP
n=0
1bnxn¥
l ???1Q)
?/
)
?¥
l ???
(1)
1P
n=1
anx2n
(2)
1P
n=1
(an +bn)xn
(3)
1P
n=0
anbnxn .
3
! 1P
n=0
akxk1 ?M (n = 0;1;:::;x1 > 0)p£?0 < x < x1
H
μ
(1)
1P
n=0
anxn
l ?
(2)
flfl
flfl 1P
n=0
anxn
flfl
flfl? M.
x2
a
a
a)))
?
?
?¥¥¥???ééé
1
!f(x) =
1P
n=0
anxn?jxj < r
H
l ?*
1?1P
n=0
an
n+1r
n+1
l ?
Hμ
Z r
0
f(x)dx =
1X
n=0
an
n+1r
n+1
?
?1P
n=0
anxn?x = r
H
^?
l ?.
2. ?¨
5£
üR10 1n(1?x)x dx = ?
1P
n=1
1
n2.
2
3.¨?[±s?[sp/
)
?¥?
(1)
1P
n=1
xn
n ;
(2)
1P
n=1
nxn ;
(3)
1P
n=1
n(n+1)xn ;
(4)
1P
n=1
(?1)n?1
n(2n?1)x
2n ;
(5)
1P
n=1
n2+1
n!2n x
n ;
(6)
1P
n=1
(?1)nn3
(n+1)! x
n ;
(7)
1P
n=0
x4n?1
4n+1;
(8)
1P
n=0
(2n+1 ?1)xn ;
(9)
1P
n=1
n2xn?1 ;
(10)
1P
n=1
(2n+1)2
n! x
2n+1 .
4.p/
)
?¥?
(1)
1P
n=1
2n?1
2n ;
(2)
1P
n=1
1
n(2n+1) .
5.£
ü
(1)
1P
n=0
x4n
(4n)!
?@Z?y
(4) = y
3
(2)
1P
n=0
xn
(n!)2
?@Z?xy
00 +y0 ?y = 0 .
6
!f(x)
^
a)
?1P
n=0
anxn(?R;R)
¥?f
??f(x)1f
?5)
???CQ
a¥[ ?f(x)1}f
?5)
???C}
Q
a¥[.
7
!f(x) =
1P
n=1
xn
n2 ln(1+n):
(1)p£f(x)[?1;1] ??f0(x)(?1;1)= ??
(2)p£f(x)?x = ?1 V?
(3)p£lim
x!1?
f0(x) = +1
(4)p£f(x)?x = 1? V?.
x3fff
?
?
?¥¥¥
a
a
a)))
?
?
?ZZZ 7 7 7
1. ?¨'?f
?¥Z
T|/
f
?Z 71
? X ?
)
?i
a
ü
l ?uW.
(1) 1a?x;a 6= 0;
(2) 1(1+x)2;
(3) 1(1+x)3;
(4) cos2 x ;
(5) sin3 x ;
(6) xp1?3x;
(7) (1+x)e?x ;
4
(8) ln(x+p1+x2);
(9) 11?3x+2x2;
(10) arcsinx;
(11) ln(1+x+x2);
(12) xarctanx?lnp1+x2;
(13) Rx0 sintt dt;
(14) Rx0 cost2dt:
2 ?¨
a)
?Mep/
f
?¥
? X ?
Z 7
T
(1) ln(1+x2)1+x ;
(2) (arctanx)2 ;
(3) ln2(1?x):
3|/
f
?·??x0Z 71
ü à)
?
(1) 1a?x;x0 = b(6= a);
(2) ln 12+2x+x2;x0 = ?1;
(3) lnx;x0 = 2;
(4) ex;x0 = 1:
4Z 7ddx(ex?1x )1x¥
a)
?iw1 =
1P
n=1
n
(n+1)!:
5
k|f(x) = lnxZ 7?x?1x+1¥
a)
?.
6
!f
?f(x)uW(a;b)=¥ò¨?
?Báμ?'iM > 0
5
BMx 2 (a;b)μ
jf(n)(x)j? M;n = 1;2;:::;
£
ü(a;b)=?i?xDx0μ
f(x) =
1X
n=0
f(n)(x0)
n! (x?x0)
2:
6