?=
E=cò?sW¥ ó"D?
??
x1ò?sW¥ ó"
1.?¨ì
T9
?/
s
(1) HL xy2dy ?x2ydx?L1??x2a2 + y2b2 = 1|?_
(2) HL (x+y)dx+(x?y)dyL](1)
(3) HL (x+y)2dx?(x2 +y2)dyL
^??1A(1;1);B(3;2);C(2;5)¥?
??¥H?|?_
(4) HL (x2 +y3)dx?(x3 ?y2)dyL1x2 +y2 = 1|?_
(5) HL ey sinxdx+e?x sinydyL1 ?a ? x ? b;c ? y ? d¥H?|
?_
(6) HL exy [(ysinxy +cos(x+y))dx+(xsinxy +cos(x+y))dy]?L
^?i?
;á>wL
2. ?¨ì
T9
?/
wL
?1m?¥
?
(1)
?gLr2 = a2 cos2
(2)2 58=?Lx3 +y3 = 3axy(a > 0)
(3) x = a(1+cos2 t)sint;y = asin2 tcost;0 ? t ? 2…:
3. ?¨ú
?
Tp/
s
(1) RR
S
x2dydz +y2dzdx+z2dxdy?
(a) S1 ?Z80 ? x;y;z ? a¥H?w
??§
(b) S1
?x2 +y2 = z2(0 ? z ? h)/§
1
(2) RR
S
x3dydz +y3dzdx+z3dxdy?S
^?êo
?¥?§
(3)
!S
^
?o
?z = pa2 ?x2 ?y2¥
§p
(a) RR
S
xdydz +ydzdx+zdxdy
(b) RR
S
xz2dydz +?x2y ?z2¢dzdx+?2xy +y2z¢dxdy
(4)RR
S
?x?y2 +z2¢dydz +?y ?z2 +x2¢dzdx+?z ?x2 +y2¢dxdyS
^(x?a)2+
(y ?b)2 +(z ?c)2 = R2¥?§
4.¨
?? X
?
T9
?/
s
(1) HL x2y3dx+dy +zdz?
(a) L1??x2 +y2 = a2;z = 0Z_
^I
H?
(b) L1y2 + z2 = 1;x = y
??¥??Vxà?_ A??I
H?Z
_
(2) HL (y ?z)dx+(z ?x)dy +(x?y)dzL
^V(a;0;0)ü(0;a;0)
à(0;0;a)í?(a;0;0)¥???
(3) HL?y2 +z2¢dx+?x2 +z2¢dy +?x2 +y2¢dz?
(a) L1x + y + z = 1D?US�LZ_D
??ü
?u×
§
?·
mE5
(b) L
^wLx2 + y2 + z2 = 2Rx;x2 + y2 = 2rx(0 < r < R;z > 0)
?¥
Z_D
??w
?¥
§?·
mE5
(4) HL ydx+zdy +xdzL
^x2 + y2 + z2 = a2;x + y + z = 0Vxà?
_ A???
^I
H?Z_
2
5.
!L1ü
?
>wLl1ü
?
?iZ_£
ü
I
L
cos(n,l)ds = 0
?n
^L¥?ELZ_
6.
!S
^>w
?l1?i%?Z_£
ü
ZZ
S
cos(n;l)dS = 0
7.pI = HL [xcos(n;x)+ycos(n;y)]dsL1?μ?u×D¥;á>
wLn1L¥?E_
8£
üú
?sI
L
cos(r;n)
r ds = 0;
?L
^ü
?
B? ?Yu× ¥H?7r
^L
B?? ?B??
¥ ?n
^L¥?ELZ_??rV
UL
B?? =B??¥
?5??s-′??2…:
99
?ú
?sZZ
S
cos(r;n)
r2 dS;
?S1e?>;áw
?n1w
?S
?(?;·;?))¥?E_r =
(? ?x)i+(· ?y)j+(? ?z)k;r = jrj
k/
?f?é?)
?
(1)w
?S?¥u×?c(x;y;z)?
(2)w
?S?¥u×c(x;y;z)?
10p£ZZZ
V
dxdydz
r =
1
2
ZZ
S
cos(r;n)dS;
?S
^?V¥s?;á>w
?n1S¥?ELZ_r =
(x;y;z);r = jrj .s/
?f?ú?)
?
3
(1) V??ce?(0;0;0)
(2) V?ce?(0;0;0)
H
7
ZZZ
V
dxdydz
r = lim"!0+
ZZZ
V?V"
dxdydz
r ;
?V"
^[e?1?[varepsilon1??¥o
11 ?¨ú
?
TMD[/s
(1) RR
S
xydxdy +xzdzdx+yzdydz;
(2) RR
S
(@u@x cosfi + @u@y cosfl + @u@z cos )?cosfi;cosfl;cos
^w
?¥?
ELZ_??
12
!u(x;y);v(x;y)
^ μ=¨ ??ê?
?¥f
?i
!
¢u = @
2u
@x2 +
@2u
@y2
£
ü
(1) RR
S
¢udxdy = Rl @u@nds;
(2) RR
v¢udxdy = RR
(@u@x @v@x + @u@y @v@x)dxdy +Hl v@u@n;
(3) RR
(u¢v ?v¢u)dxdy = ?Hl(v@u@n ?u@v@n)ds? 1>wLl
??¥
ü
?u×@u@n; @v@n1l?EL¥Z_?
?
13
!¢u = @2u@x2 + @2u@y2 + @2u@z2, S
^V¥H?w
?£
ü
(1) RRR
V
¢udxdydz = RR
S
@u
@n
(2) RR
S
u@u@n = RRR
V
[(@u@x)2 +(@u@y)2 +(@u@z)2]+RRR
V
u¢udxdydz
T?uV#
H?w
?S
μ ??¥=¨ê?
?@u@n1w
?S¥?EL¥Z_?
?
4
149
?/
w
?s
(1)RR
S
(x2?y2)dydz+(y2?z2)dzdx+2z(y?x)dxdy?S
^x2a2 +y2b2 +z2c2 =
1(z ? 0)/§
(2) RR
S
(x+cosy)dydz +(y +cosz)dzdx+(z +cosx)dxdy;S
^ ?8?¥H
?
?7 ?8??x+y +z = 1??US
???
(3) RR
S
F¢ndS?F = x3i+y3j+z3k;n
^S¥?E_S1x2+y2+
z2 = a2 (z ? 0)
§
(4) RR
S
(x3a2 +yz)dydz+(y3b2 +z3x2)dzdx+(z3c2 +x3y3)dxdy;S
^x2a2 + y2b2 + z2c2 =
1(x ? 0)a§
15£
ü?w
?S
??¥8??V = 13 RR
S
(xcosfi + ycosfl +
zcos )dS
T?cosfi;cosfl;cos 1w
?S¥?EL¥Z_??
16?L
^ü
?xcosfi + ycosfl + zcos ?p = 0
¥>wL
?
?
?u×¥
?1Sp
I
L
flfl
flfl
flfl
flfl
fl
dx dy dz
cosfi cosfl cos
x y z
flfl
flfl
flfl
flfl
fl
;
?LG?_é?
17
!P;Q;Rμ ??ê?
?O?i;á>w
?SμRR
S
Pdydz +
Qdzdx+Rdxdy = 0;£
ü@P@x + @Q@y + @R@z = 0:
18
!P(x;y);Q(x;y)?ü
?
μ ??ê?
?7O[?i
?(x0;y0)1??[?i?
?r1??¥
??l : x = x0 + rcos ;y =
y0 +rsin (0 ? ? …)?μ
Z
l
P(x;y)dx+Q(x;y)dy = 0;
5
p£P(x;y) = 0; @Q@x = 0:
x2sD
^?í1
1.£/
sD
^?í1ip
?
ì¥′
(1) R(1;1)(0;0) (x?y)(dx?dy)
(2) R(1;2)(2;1) ydx?xdyx2·?ü
?¥
^?
(3) R(6;8)(1;0) xdx+ydyx2+y2?YVe?¥
^?
(4) R(a;b)(0;0) f (x+y)(dx+dy)
T?f(u)
^ ??f
?
(5) R(1;2)(2;1) ’(x)dx+?(y)dy?’?1 ??f
?
(6) R(6;1;1)(1;2;3) yzdx+xzdy +xydz
(7) R(2;3;?4)(1;1;1) xdx+y2dy ?z3dz
(8) R(x2;y2;z2)(x
1;y1;z1)
xdx+ydy+zdzp
x2+y2+z2?(x1;y1;z1)(x2;y2;z2)o
?x
2 + y2 +
z2 = a2
2p/
?±s¥ef
?
(1) ?x2 +2xy ?y2¢dx+?x2 ?2xy ?y2¢dy
(2) ?2xcosy ?y2 sinx¢dx+?2ycosx?x2 siny¢dy
(3) azdx+ bzdy + ?by?axz2 dz
(4) ?x2 ?2yz¢dx+?y2 ?2xz¢dy +?z2 ?2xy¢dz
(5) ?ex siny +2xy2¢dx+?ex cosy +2x2y¢dy
(6)
h
x
(x2?y2)2 ?
1
x +2x
2
i
dx+
h
1
y ?
y
(x2?y2)2 +3y
3
i
dy +5z3dz
6
3f
?F (x;y)?
?@
I
1Hq??
P±s
TF (x;y)(xdx+ydy)
^?
±s
4£
Pdx+Qdy = 12 xdy ?ydxAx2 +2Bxy +Cy2
a?Hq@P@y = @Q@x?ABC1è
?AC ?B2 > 0p?(0;0)¥
?ìè
?
5pI = HL xdx+ydyx2+y2?L
^?üVe?¥e?>wL|?_
!L??¥u×1D
(1) D?ce?
(2) Dce?=?
6p
I =
I
L
"
y
(x?2)2 +y2 +
y
(x+2)2 +y2
#
dx
+
"
2?x
(2?x)2 +y2 +
?(2+x)
(2+x)2 +y2
#
dy
?L
^?üV(?2;0)?(2;0)?¥e?>wL
7
!u(x;y)? ?Yu×D
μ=¨ ??ê?
?£
üu(x;y)D=
μ
@2u
@x2 +
@2u
@y2 = 0
¥ 1Hq
^D=?Be?;á>wLL?μ
I
L
@u
@nds = 0
?@u@n1L?EL¥Z_?
?
89
?s
I =
Z
L
(x+y)dx+(x?y)dy
x2 +y2
7
?L
^V?A(?1;0)?B(1;0)¥BH?YVe?¥;áwL
?¥Z?
^
y = f (x) (?1 ? x ? 1)
99
?s
I =
Z
L
xln?x2 +y2 ?1¢dx+yln?x2 +y2 ?1¢dy
?L
^$f
?¥?l×=V?(2;0)à(0;2)¥?
;áwL
x3?
??
1pu = x2 + 2y2 + 3z2 + 2xy ? 4x + 2y ? 4z?O(0;0;0), A(1;1;1),
B(?1;?1;?1)¥0ip01
,¥?
29
?/
_
?F¥??è
(1) F = (y2 +z2;z2 +x2;x2 +y2)
(2) F = (x2yz;xy2z;xyz2)
(3) F = ( xyz; yzx; zxy)
3£
üF = (yz(2x+y+z);xz(x+2y+z);xy(x+y+2z))
^μ
]?ip
]f
?
4
!P = x2 +5?y +3yz;Q = 5x+3?xz ?2;R = (?+2)xy ?4z
(1)9
?R
L
Pdx+Qdy +Rdz?L
^
?èLx = acost;y = asint;z =
ct(0 ? t ? 2…)
(2)
!F = (P;Q;R)protF
(3)
I
1Hq/F1μ
]?ip
]f
?
8
5
!’1 V±f
?r = (x;y;z), r = jrjpgrad’(r)div (’(r)r)
rot(’(r)r)
6p_
?F = (?y;x;z)wLL¥ì
@
(1) L1Oxyü
?
¥??x2 +y2 = 1z = 0I
H?Z_
(2) L1Oxyü
?
¥??(x?2)2 +y2 = R2z = 0I
H?Z_
(3) L1Oxyü
?
?B?
;áe?>wL
???¥ü
?u×D¥
?1S£
üFL¥ì
@
12S
(4)
!μBü
?… : ax + by + cz = d(c 6= 0)|…1
§…
μB?
;áe?>wLLZ_1?…1?_L??¥ü
?u×¥
?1S
ùFL¥ì
@
^
I
1$
7p_
?F = grad(arctan yx)wLL¥ì
@
(1) L?ì?zà
(2) Lì?zàB?
(3) Lì?zàn?
8
!_
?F = fP;Q;Rg"e?(0;0;0)?μ ??¥ê?
?o
?x2 +y2 +z2 = t2
F¥é?B%?′F¥Z_D
O?r = (x;y;z)M
]7OF¥??1
,£
üN_
?1F = kr3r
k
^è
?
9
!μB
?
?u = (x;y;z)"(0,0,0)??μ ??ê?
??′
?
^[e?1??¥o
??
?
?¥0?¥?1
,£
üN
?
?
Dc1r (r = px2 +y2 +z2)?μB?è
??c11%?è
?
10
!G
^ bW 7u×u = (x;y;z)G
μ=¨ ??ê?
?£
üu = (x;y;z)G=??¥ 1Hq
^G=?ie?s?;áw
?S?
9
μZZ
s
@u
@ndS = 0
10