?
E?c′DHq′
x1′DKl=eE
1/
f
?¥v′??l′?
(1) f(x;y) = (x?y +1)2;
(2) f(x;y) = 3axy ?x3 ?y3(a > 0);
(3) f(x;y) = xy
q
1? x2a2 ? y2b2(a;b > 0);
(4) f(x;y) = e2x(x+y2 +2y);
(5) f(x;y) = sinx+cosy +cos(x?y)(0 ? x;y ? …2);
(6) f(x;y) = (px2 +y2 ?1)2:
2X?y = ax2 + bx + c,4?¤BF
? (xi;yi);i=1,2,...,n ?¨Kl
=eEp"
?a,b,c
?
?@¥?íBQZ?F.
3X?ü
?
μn??¥USsY
^
A1(x1;y1);A2(x2;y2);:::;An(xn;yn)
kpB?
P
?D?n?? ?¥üZ?Kl.
4p/
f
?·?S?D=¥Kv′?Kl′
(1) f(x;y) = x2 ?y2;D = f(x;y)jx2 +y2 ? 4g;
(2) f(x;y) = x2 ?xy +y2;D = f(x;y)jjxj+jyj? 1g;
(3) f(x;y;z) = (ax+by +cz)e?(x2+y2+z2);a2 +b2 +c2 > 0;D = R3.
5p£
1
(1) f(x;y) = Ax2 +2Bxy+Cy2 +2Dx+2Ey+FR2μKl′íKv
′?A > 0;B2 < AC;
(2) f(x;y) = xy + 1x + 1y0 < x;y < +1μKl′íKv′.
6
!F(x;y;z)μ=¨ ??ê?
?iO
F(x0;y0;z0) = 0; Fx(x0;y0;z0) 6= 0:
)
??F(x;y;z) = 0??¥?f
?z = f(x;y)(x0;y0)?¥′¥A1?
sHq.p?
x2 +y2 +z2 ?2x+2y ?4z ?10 = 0
???¥z = f(x;y)¥′.
7p/
?f
?¥v′?l′
(1) (x+y)2 +(y +z)2 +(z +x)2 = 3
(2) z2 +xyz ?x2 ?xy2 ?9 = 0:
8X??é12p¥BM????p
?Kv¥???.
9μB vM? zb =24cm1ü
?¥
H|S?B?
¢
P¤?Kvp
?H¥`?fi?|¥ zx(n/m).
x2HHHqqq′′′DDD ? ? ?ììì μ μ μ°°°eee
?
?
?EEE
1.p/
f
?
?óHq/¥′
2
(1) f = x+y?x2 +y2 = 1
(2) f = x2 +y2?x+y ?1 = 0
(3) f = x?2y +2z?x2 +y2 +z2 = 1
(4) f = 1x + 1y?x+y = 2
(5) f = xyz?x2 +y2 +z2 = 1x+y +z = 0
(6) f = ax2 +by2 +2hxy?x2 +y2 = 1
(7) f = x2+y2+z2?(x2+y2+z2)2 = a2x2+b2y2+c2z2lx+my+nz = 0.
2pf = xmynzpHqx + y + z = aa > 0m > 0n > 0p >
0x > 0;y > 0;z > 0-/¥Kv′.
3pf
?z = 12(xn + yn)Hqx + y = l(l > 0;n ? 1)-/¥′i
£
ü?a ? 0;b ? 0;n ? 1
H
a+b
2
?n
? a
n +b
2
n
:
4pV
?B?78Kv¥éZ8.
5p8B?7V
?Kl¥éZ8.
6p?¥?M????
?Kl?.
7é1a¥M
′M?
B
???Z?
6B
??? b?
¥éò1
H
?
ì
???Z?
???
?-?Kl.
8pe??=ü
?a1x+b1y +c1z +d1 = 0a2x+b2y +c2z +d2 = 0¥
?L¥K ? b
9p?tLy = x2?°Lx?y = 1W¥K ?.
10px > 0;y > 0;z > 0
Hf
?f(x;y;z) = lnx + 2lny + 3lnzo
3
?x2 +y2 +z2 = 6r2
¥v′,£
üa;b;c1?
L
?
H
ab2c3 ? 108
a+b+c
6
?6
:
11
!f
?f(x;y;u;v)F(x;y;u;v)G(x;y;u;v)=¨ V±? X1
?0
@ Fx Fy Fu Fv
Gx Gy Gu Gv
1
A
?12.
7
L(x;y;u;v) = f(x;y;u;v)+?1F(x;y;u;v)+?2G(x;y;u;v)
?P0(x0;y0;u0;v0)
^f
?L¥×??£
ü?d2L(P0) > (<)0
HP0
^f
?f?
?Hq
F(x;y;u;v) = 0G(x;y;u;v) = 0
/¥Hql
v′?.
4