1
4-2 解题过程,
(1)由() () ( ) ( )
[ ] ()
sin / 2 sin sin ( / 2) / 2ft wtut ut T wtut wt T ut T==+
得
() () [ ] ( ){ }
2
2
2222
2
22
sin sin ( / 2) / 2
1
sT
sT
ft wtut wtT utT
e
ss
e
s
ωω
ωω
ω
ω
=+
=+
++
=+
+
LL L
(2)由()sin sin cos cos sinwt wt wt+= +得
()( )( )
2222
22
sin sin cos cos sin
cos sin
cos sin
wt wt wt
s
ss
s
s
ω
ωω
ω
ω
+= +
=+
++
+
=
+
LLL
4-3 解题过程,
(1)由
()
( )
()
2 2
2
t
f te ut e
=得
()
()
()
22
22
2( 1)
2
1
1
1
1
t
s
s
ft e e ut
ee
s
e
s
+
=
=
+
=
+
LL
(2)()
2
1
1
s
f te
s
=
+
L
(3)由
() ( )
2t
f teute
=?得
() ()
2
2
1
t
e
ft e eut
s
==
+
LL
(4)由
() ( ) ( )sin 2 1 2 1ft t ut=?+
()( ) ( ) ( )cos 2sin 2 1 1 sin 2cos 2 1 1tut tut=+
得
2
() ( ) ( ){ } ( )( ){ }
22
2
cos 2 sin 2 1 1 sin 2 sin 2 1 1
2cos2 sin2
44
2cos2 sin2
4
ss
s
ft t ut t ut
s
ee
ss
s
e
s
=+
=+
++
+
=
+
LL L
(5)由() ( ) ( ) ( ) ( ) ( )11 2 2 2ft t ut t ut ut=得
() ( ) ( ) ( ) ( )()
()
2
22
2
11 2 2 2
111
1
11
sss
s
ft t ut t ut ut
eee
ss s
se
s
=
=
=?+
LL L L
4-4 解题过程,
(1)
1
1
1
t
e
s
=
+
L
(2)由
42
3
23
2
s
s
=
+
+
得
3
11
2
42
2
3
23
2
t
e
s
s
==
+
+
LL
(3)由
()
4411
3
23 3
2
ss s
s
=?
+
+
得
()
111
4414 1
3
23 3 3
2
ss s
s
=?
+
+
LLL
(4)由
22
111
(5)5 5
s
ss s s
=?
++
得
()
111
1111 1
1cos5
(5)5 5 55
s
t
ss s s
=? =?
LLL
(5)由
()
3311
4( 2) 2 2 4ss ss
=?
++ ++
得
()
()
11124
331313
4(2)22242
tt
ee
ss s s
=?=
++ + +
LLL
(6)由
()
363
4( 2) 4 2
s
ss ss
=?
++ ++
得
3
()
11142
363
63
4( 2) 4 2
tt
s
ee
ss s s
=?=
++ + +
LLL
(7)
1
2
1
1sin ()
1
tt
s
δ
+= +
+
L
(8)由
2
111
32 2 1ss s s
=?
+
得
1112
2
11
32 2 1
tt
ee
ss s s
=?=?
+
LLL
(9)由
()
111
1
1sRCs s
s
RC
=?
+
+
得
()
1
1
1
1
t
RC
e
sRCs
=?
+
L
(10)由
()
112
1
1
RCs
sRCs s
s
RC
=?
+
+
得
()
1
1
12
1
t
RC
RCs
e
sRCs
=?
+
L
(11)由
()
()
222 22
1
11
11
1
1
w
wRCws
RCw
swRCs sw
RCw
ss
RCRC
=?+
++ +
+
++
得
()
()
1
222
cos sin
1
1
t
RC
wRCw
ewt wt
swRCs RCw
RCw
= +
++
+
L
(12)由
2
45 7 3
56 3 2
s
ss s s
+
=?
++ + +
得
132
2
45
73
56
tt
s
ee
ss
+
=?
++
L
(13)由
() ( )
()( )
2
100 50 100 50
201 200 1 200
ss
ss ss
=
++ ++
得
()
()
1 200
2
100 50
100
49 150
201 200 199
tt
s
ee
ss
+
=+
++
L
(14)令
()() ()()
312 4
332
3
21
12 1 1
kkk ks
ss
ss s s
+
=+ + +
++
++ + +
则
()
1 3
2
3
1
1
s
s
k
s
=?
+
==?
+
,
2
1
3
2
1
s
s
k
s
=?
+
= =
+
,
3
1
3
1
1
s
ds
k
ds s
=?
+
==?
+
,
2
4
2
1
3
1
1
s
ds
k
ds s
=?
+
= =
+
4
从而
()() ()()
332
31211
21
12 1 1
s
ss
ss s s
+?
=+? +
++
++ + +
所以
()()
()
3
3
1
12
tt
s
ette
ss
+
=? +? +
++
L
(15)由
22 22
AAK
sK KsK
=?
++
得
1
22
sin
AA
Kt
sK K
=
+
L
(16)由于
()
1
2
2
1
sin
23
3
s
tKt
s
=
+
L 由拉氏变换的积分性质可得
()
() () ()
1
2
02
11 3
sin 3 sin 3 cos 3
18 6
23
3
t
t
dtt
s
τττ
==?
+
∫
L
4-19 解题过程,
由于()f t可以写作 () ( )
1
0k
f tftkT
∞
=
=?
∑
()
()
1
1
0
1
skT
sT
k
Fs
Fs e
e
∞
=
==
∑
则
() () ( )
1
0k
f tFs ftkT
∞
=
==
∑
LL
() ()
11
00
skT
kk
ftkT Fse
∞∞
==
=?=
∑∑
L
()
( )
1
1
0
1
skT
sT
k
Fs
Fs e
e
∞
=
==
∑
4-20 解题过程,
(1)周期矩形脉冲信号的第一个周期时间信号为() ()
1
2
T
ft ut ut
=
所以
()
2
1
1
1
T
s
Fs e
s
=?
则
()
()
()
2
1
2
11
1 1
1
T
s
sT TsT
s
Fs
e
Fs
e se
se
== =
+
(2)正弦全波整流脉冲信号第一周期时间信号为
5
() ( ) () ()
1
sin sin sin
222
TTT
f t wt u t u t wtu t w t u t
==+
所以 ()
2
1
2222
T
s
ww
Fs e
swsw
=+
++
则
()
()
2
1
22
1
11
T
s
TT
s s
Fs
we
Fs
sw
ee
+
==?
+
4-27 解题过程:由 ()
t
et e
= 得() ()
1
1
Es et
s
==
+
L
() ()
23
1
2
2
tt t
zs
rt rt e e e
== +
() ()
()
112
21 2 3
zs zs
Rs rt
sss
==?+
+ +?
L
故 ()
()
()
zs
R s
Hs
Es
=
()
()
()
112
1
21 2 3
21
11
22 3
31 8
223
s
sss
s
s
ss
ss
=?+?+
++?
+
+
=? +
+?
=+?
+?
所以 () () ()
()()
123
3
8
2
tt
hs Hs t e e utδ
==++
L
4-35 解题过程,
()
()
()
1
1
k
i
i
l
j
j
sz
Hs K
sp
=
=
=
∏
∏
(K为系数)
()( )
()( )( )
()
()()
2
2
22
313 13
45
3210
ss j s j
K
ss js j
ss s
K
sss
+? ++
=
++? ++
++
=
+++
又知 ()5H ∞=,即 ()lim 5
s
Hs K
→∞
==
()
()
()()
( )
232
322
545 545
516303210
ss s s s s
Hs
ss ssss
++ + +
==
+ +++++
4-38 解题过程,
6
分别画出题图对应的零极点图如下图(a-2)~(f-2)所示。
(1)由解图(a-1)有,
当0ω =时,极点矢量
1
M最短,辐角
1
0θ =,随着ω↑,有↑
1
M,
1
θ ↑
当ω→∞时,→∞
1
M,
1
2
π
θ →
幅频、相频特性如图(a-3)、(a-4)(极点选取-0.5为例)
(a-1) (a-2)
(a-3) (a-4)
(2)由解图(b)有,
当0ω =时,
1
N最短,辐角
1
0? =,随着ω↑,有↑
1
N,
1
↑
当ω→∞时,→∞
1
N,
1
2
π
→
幅频、相频特性如图(以零点为-0.5为例)
(b-1) (b-2)
2
π
jω
jω
σσ
1
M
1
θ
jω
σ
jω
1
N
1
7
(b-3) (b-4)
(3)由解图(b)有,
0ω =时,
1
M,
1
N均为最短,辐角
11
0θ?= =
ω↑,则有↑
1
M,↑
1
N,且有
1
θ ↑,
1
↑,且有
11
θ?<
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以极点-0.5,零点-0.2为例)
(c-1) (c-2)
(c-3) (c-4)
(4)由解图(d)有,
0ω =时,
1
M,
1
N均为最短,辐角
11
0θ?= =
ω↑,则有↑
1
M,↑
1
N,且有>
11
MN;
1
θ ↑,
1
↑,且有
11
θ?>
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以零点-0.5,极点-0.2为例)
2
π
jω
σ
1
1
θ
1
N
1
M
8
(d-1) (d-2)
(d-3) (d-4)
(5)由解图(e)有,
0ω =时,
1
M,
1
N均为最短,辐角
1
0θ =,
1
π=
ω↑,则有↑
1
M,↑
1
N,>
11
MN;
1
θ ↑,
1
↓
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以极点-0.5,零点0.2为例)
(e-1) (e-2)
(e-3) (e-4)
(6)由解图(e)有,
0ω =时,
1
M,
1
N均为最短,辐角
1
0θ =,
1
π=
π
jω
σ
jω
σ
1
θ
1
1
N
1
M
jω
σ
σ
jω
1
N
1
M
1
θ
1
9
ω↑,则有↑
1
M,↑
1
N,>
11
MN;
1
θ ↑,
1
↓,但相对关系与(e)中不同。
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以极点-0.5,零点0.3为例)
(f-1) (f-2)
(f-3) (f-4)
π
jω
σ
jω
σ
1
M
1
N
1
θ
1
4-2 解题过程,
(1)由() () ( ) ( )
[ ] ()
sin / 2 sin sin ( / 2) / 2ft wtut ut T wtut wt T ut T==+
得
() () [ ] ( ){ }
2
2
2222
2
22
sin sin ( / 2) / 2
1
sT
sT
ft wtut wtT utT
e
ss
e
s
ωω
ωω
ω
ω
=+
=+
++
=+
+
LL L
(2)由()sin sin cos cos sinwt wt wt+= +得
()( )( )
2222
22
sin sin cos cos sin
cos sin
cos sin
wt wt wt
s
ss
s
s
ω
ωω
ω
ω
+= +
=+
++
+
=
+
LLL
4-3 解题过程,
(1)由
()
( )
()
2 2
2
t
f te ut e
=得
()
()
()
22
22
2( 1)
2
1
1
1
1
t
s
s
ft e e ut
ee
s
e
s
+
=
=
+
=
+
LL
(2)()
2
1
1
s
f te
s
=
+
L
(3)由
() ( )
2t
f teute
=?得
() ()
2
2
1
t
e
ft e eut
s
==
+
LL
(4)由
() ( ) ( )sin 2 1 2 1ft t ut=?+
()( ) ( ) ( )cos 2sin 2 1 1 sin 2cos 2 1 1tut tut=+
得
2
() ( ) ( ){ } ( )( ){ }
22
2
cos 2 sin 2 1 1 sin 2 sin 2 1 1
2cos2 sin2
44
2cos2 sin2
4
ss
s
ft t ut t ut
s
ee
ss
s
e
s
=+
=+
++
+
=
+
LL L
(5)由() ( ) ( ) ( ) ( ) ( )11 2 2 2ft t ut t ut ut=得
() ( ) ( ) ( ) ( )()
()
2
22
2
11 2 2 2
111
1
11
sss
s
ft t ut t ut ut
eee
ss s
se
s
=
=
=?+
LL L L
4-4 解题过程,
(1)
1
1
1
t
e
s
=
+
L
(2)由
42
3
23
2
s
s
=
+
+
得
3
11
2
42
2
3
23
2
t
e
s
s
==
+
+
LL
(3)由
()
4411
3
23 3
2
ss s
s
=?
+
+
得
()
111
4414 1
3
23 3 3
2
ss s
s
=?
+
+
LLL
(4)由
22
111
(5)5 5
s
ss s s
=?
++
得
()
111
1111 1
1cos5
(5)5 5 55
s
t
ss s s
=? =?
LLL
(5)由
()
3311
4( 2) 2 2 4ss ss
=?
++ ++
得
()
()
11124
331313
4(2)22242
tt
ee
ss s s
=?=
++ + +
LLL
(6)由
()
363
4( 2) 4 2
s
ss ss
=?
++ ++
得
3
()
11142
363
63
4( 2) 4 2
tt
s
ee
ss s s
=?=
++ + +
LLL
(7)
1
2
1
1sin ()
1
tt
s
δ
+= +
+
L
(8)由
2
111
32 2 1ss s s
=?
+
得
1112
2
11
32 2 1
tt
ee
ss s s
=?=?
+
LLL
(9)由
()
111
1
1sRCs s
s
RC
=?
+
+
得
()
1
1
1
1
t
RC
e
sRCs
=?
+
L
(10)由
()
112
1
1
RCs
sRCs s
s
RC
=?
+
+
得
()
1
1
12
1
t
RC
RCs
e
sRCs
=?
+
L
(11)由
()
()
222 22
1
11
11
1
1
w
wRCws
RCw
swRCs sw
RCw
ss
RCRC
=?+
++ +
+
++
得
()
()
1
222
cos sin
1
1
t
RC
wRCw
ewt wt
swRCs RCw
RCw
= +
++
+
L
(12)由
2
45 7 3
56 3 2
s
ss s s
+
=?
++ + +
得
132
2
45
73
56
tt
s
ee
ss
+
=?
++
L
(13)由
() ( )
()( )
2
100 50 100 50
201 200 1 200
ss
ss ss
=
++ ++
得
()
()
1 200
2
100 50
100
49 150
201 200 199
tt
s
ee
ss
+
=+
++
L
(14)令
()() ()()
312 4
332
3
21
12 1 1
kkk ks
ss
ss s s
+
=+ + +
++
++ + +
则
()
1 3
2
3
1
1
s
s
k
s
=?
+
==?
+
,
2
1
3
2
1
s
s
k
s
=?
+
= =
+
,
3
1
3
1
1
s
ds
k
ds s
=?
+
==?
+
,
2
4
2
1
3
1
1
s
ds
k
ds s
=?
+
= =
+
4
从而
()() ()()
332
31211
21
12 1 1
s
ss
ss s s
+?
=+? +
++
++ + +
所以
()()
()
3
3
1
12
tt
s
ette
ss
+
=? +? +
++
L
(15)由
22 22
AAK
sK KsK
=?
++
得
1
22
sin
AA
Kt
sK K
=
+
L
(16)由于
()
1
2
2
1
sin
23
3
s
tKt
s
=
+
L 由拉氏变换的积分性质可得
()
() () ()
1
2
02
11 3
sin 3 sin 3 cos 3
18 6
23
3
t
t
dtt
s
τττ
==?
+
∫
L
4-19 解题过程,
由于()f t可以写作 () ( )
1
0k
f tftkT
∞
=
=?
∑
()
()
1
1
0
1
skT
sT
k
Fs
Fs e
e
∞
=
==
∑
则
() () ( )
1
0k
f tFs ftkT
∞
=
==
∑
LL
() ()
11
00
skT
kk
ftkT Fse
∞∞
==
=?=
∑∑
L
()
( )
1
1
0
1
skT
sT
k
Fs
Fs e
e
∞
=
==
∑
4-20 解题过程,
(1)周期矩形脉冲信号的第一个周期时间信号为() ()
1
2
T
ft ut ut
=
所以
()
2
1
1
1
T
s
Fs e
s
=?
则
()
()
()
2
1
2
11
1 1
1
T
s
sT TsT
s
Fs
e
Fs
e se
se
== =
+
(2)正弦全波整流脉冲信号第一周期时间信号为
5
() ( ) () ()
1
sin sin sin
222
TTT
f t wt u t u t wtu t w t u t
==+
所以 ()
2
1
2222
T
s
ww
Fs e
swsw
=+
++
则
()
()
2
1
22
1
11
T
s
TT
s s
Fs
we
Fs
sw
ee
+
==?
+
4-27 解题过程:由 ()
t
et e
= 得() ()
1
1
Es et
s
==
+
L
() ()
23
1
2
2
tt t
zs
rt rt e e e
== +
() ()
()
112
21 2 3
zs zs
Rs rt
sss
==?+
+ +?
L
故 ()
()
()
zs
R s
Hs
Es
=
()
()
()
112
1
21 2 3
21
11
22 3
31 8
223
s
sss
s
s
ss
ss
=?+?+
++?
+
+
=? +
+?
=+?
+?
所以 () () ()
()()
123
3
8
2
tt
hs Hs t e e utδ
==++
L
4-35 解题过程,
()
()
()
1
1
k
i
i
l
j
j
sz
Hs K
sp
=
=
=
∏
∏
(K为系数)
()( )
()( )( )
()
()()
2
2
22
313 13
45
3210
ss j s j
K
ss js j
ss s
K
sss
+? ++
=
++? ++
++
=
+++
又知 ()5H ∞=,即 ()lim 5
s
Hs K
→∞
==
()
()
()()
( )
232
322
545 545
516303210
ss s s s s
Hs
ss ssss
++ + +
==
+ +++++
4-38 解题过程,
6
分别画出题图对应的零极点图如下图(a-2)~(f-2)所示。
(1)由解图(a-1)有,
当0ω =时,极点矢量
1
M最短,辐角
1
0θ =,随着ω↑,有↑
1
M,
1
θ ↑
当ω→∞时,→∞
1
M,
1
2
π
θ →
幅频、相频特性如图(a-3)、(a-4)(极点选取-0.5为例)
(a-1) (a-2)
(a-3) (a-4)
(2)由解图(b)有,
当0ω =时,
1
N最短,辐角
1
0? =,随着ω↑,有↑
1
N,
1
↑
当ω→∞时,→∞
1
N,
1
2
π
→
幅频、相频特性如图(以零点为-0.5为例)
(b-1) (b-2)
2
π
jω
jω
σσ
1
M
1
θ
jω
σ
jω
1
N
1
7
(b-3) (b-4)
(3)由解图(b)有,
0ω =时,
1
M,
1
N均为最短,辐角
11
0θ?= =
ω↑,则有↑
1
M,↑
1
N,且有
1
θ ↑,
1
↑,且有
11
θ?<
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以极点-0.5,零点-0.2为例)
(c-1) (c-2)
(c-3) (c-4)
(4)由解图(d)有,
0ω =时,
1
M,
1
N均为最短,辐角
11
0θ?= =
ω↑,则有↑
1
M,↑
1
N,且有>
11
MN;
1
θ ↑,
1
↑,且有
11
θ?>
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以零点-0.5,极点-0.2为例)
2
π
jω
σ
1
1
θ
1
N
1
M
8
(d-1) (d-2)
(d-3) (d-4)
(5)由解图(e)有,
0ω =时,
1
M,
1
N均为最短,辐角
1
0θ =,
1
π=
ω↑,则有↑
1
M,↑
1
N,>
11
MN;
1
θ ↑,
1
↓
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以极点-0.5,零点0.2为例)
(e-1) (e-2)
(e-3) (e-4)
(6)由解图(e)有,
0ω =时,
1
M,
1
N均为最短,辐角
1
0θ =,
1
π=
π
jω
σ
jω
σ
1
θ
1
1
N
1
M
jω
σ
σ
jω
1
N
1
M
1
θ
1
9
ω↑,则有↑
1
M,↑
1
N,>
11
MN;
1
θ ↑,
1
↓,但相对关系与(e)中不同。
ω→∞时,→∞
1
M,→∞
1
N,
1
2
π
θ →,
1
2
π
→
幅频、相频特性如图(以极点-0.5,零点0.3为例)
(f-1) (f-2)
(f-3) (f-4)
π
jω
σ
jω
σ
1
M
1
N
1
θ
1