§ 2.7 卷积的性质一,卷积代数
1221.1 ffffl a weco m m u t a t i v
3121321 ][.2 fffffffl a wved i s t r i b u t i
][][.3 321321 ffffffl a wea s s o ci a t i v
*.移不变
321 fffif )()(,03201 ttffttf则二,卷积的微分和积分
1.两函数相卷积后的导数等于两函数之一的导数与另一函数相卷积,
dt
df
ff
dt
df
ff
dt
d 2
12
1
21 ][
2.两函数相卷积后的积分等于两函数之一的积分与另一函数相卷积,
dffdtff
tt
)(*][ 2121
df
dt
fd
df
dt
df
ff
t tt
)()( 2
2
1
2
2
1
21
3.推广
)()()(,)()(2)(1 tstftf nmnm则三,奇异信号的卷积特性
)()()(.1 tfttf
)()()( 00 ttftttf
)()()( 1001 tttfttttf
)(:,21 tsff若
))(( 及其各阶导数卷积t?
)()()(.2 ttt
)()()(.3 '' tfttf
t
dftutf )()()(.4
5.推广,)()()( )()( tfttf kk
)()()( 0)(0)( ttftttf kk
相当于微分运算 )()()( ' tfttpf?
)()()(1 tftutfp
相当于积分运算
)()()()()()( '' tutftuttftf
)()()()()()( '''' ttutfttuttftf
四,例题:
1.P85.2-19(a) 1
f1(t)
1 2 3 t
f2(t)
-2 2
t
解:
dttfff )]2()2()[(121
)2()2( 11 tftf
2
1-1 3 54-5 -3
f1*f2
用 P67-68图 2- 17示例解如下例题:
2
a
f1(t)
t
1
f2(t)b
t
解,
2'1 ff
2)]1()([ ftAtA
)1()( 22 tAftAf
)(1' tf
1 2 3?
21.2 ff?计算
)1()()(1 tAtAtf
22 )1()( ftAftA
)()( 2'1 tftf
tab
2 10 t
2
ab 21 t
)1(
2
tab?
32 t
21 ff
t d tab
t
0 2
t d tabt d tab
t
1
01 22
2
1
1
02 22
)1(
2
dtabtd tabdttab
t
1 2
3
2'1 ff?
=
2
4
tab
42
abtab? 21 t
)23(
4
2 ttab
32 t
3.计算下列函数的卷积结果,并化出波形,
...
2 3 5?
tf?s in2?
1 2 3 4t
1f
)(192.85 fp?
10 t
1 2
21 ff?
3
解,
0
1 )]23()3([
n
ntuntuf
)(s i n2 ttuf
0
'
1 )]23()3([)(
n
ntnttf
)()c o s1(
1
)(2 tutdf
t
dftftr
t
)()()( 2'1?
2
3
5
)('1 tf
1 2 4
0
0
)3()]2()()[c os1(
1
])23()3([)()c os1(
1
)(
n
n
nttutut
ntnttuttr
4.P85.2-19(b)
解,方法一,t<0时,
t>0时,
101 0)1(
1
)1(
21
eeedeff
t
t
t
dedeff
t
tt
1
1
)1(
1
)1(
21 2
te 2
1f
1
1
)1()1(2 tuef t
1-
方法二,用微分积分性质
)()1()1()( 11 tftuddddf
tt
d
d
dffdf
dt
dfff tt
112121 )( 需要
0)(,1l i m?
tf
t
条件为
)]1([)]1(1[ )1(21 tuetuffs t
注意积分常数的问题。
)1(11 tuf
)1()1(2 tuef t
)()1(11
)1(
)1(
)1(
)1(
)1()1()1(*1
1
1
)1(
1
)1(
1
)1(
)1()1(
)1()1(
tuede
detde
due
dt
tdu
due
tuetutue
t
t
t
t
tt
=
)1()1(1,)1()1( tuetue tt注意
).(,,)(),(
)(.5
321 thdcbthth
tha
响应所示,求子系统的冲激分别为和系统的个子系统组成,已知总线性时不变系统是由三图示
)(1 th
)(3 th
)(2 th
)(t? )(th
(a)
2
54
)(th
10
(b)
1
)(1 th
40
(c) 0
)(2 th
1
1
2
(d)
)]()([)()(
)(
321 thththth
a
可知,系统的总响应为解:由图也应为矩形波为一炬形波为一梯形波,而因
)()(
)()(
32
1
thth
thth
2
1
)]1()([2)()( 32 tututhth
)]2()1()[1()]1()()[2(
) ] }2()1()[1()]1()([{)]1()([2
)()]1()([2)( 23
tututtutut
tututtututtutu
thtututh
)(3 th
1
1
2
2
此题的关键是利用了两个不同宽度的矩形波的卷积结果是梯形波。
6.线性系统如图所示,它由几个子系统组成,已知部分子系统的冲激响应为
)1(2)(),1()( 21 tthtth
若整个系统对 sintu(t)的零状态响应如 (b)
所示,求子系统的冲激响应 h3(t)。
h2(t)
h1(t) h1(t)
h3(t)
rzs(t) 1
1 2 t
rzs(t)
(b) b
)()()()()()( 3211 ththththtth
)()1(2)1()1()( 3 thtttt
)()2()1(2)( 3 thttt
)(3 th求
)()(s i n)( thttutr
)2()1(2)()()(
)()()()(21
2)()](s i n)([
)(
s i n
1)()()s i n ()(
2
2
2
2
2
2
tttrtth
td
rd
trththt
thttut
th
td
td
td
rd
thtuttr
)()(3 trth
2
2
2
2
2
2
)(s i n
)()(s i n
)()s i n ()(
s i n
)s i n ()()(c o s
)(s i n
dt
trd
dt
td
trttu
tutt
dt
td
ttttu
dt
ttud
)(tr
)('' tr
)(tr‘
0
1
2
的宽度之和和的宽度为的面积之积与的面积为证明为有限宽度的脉冲和若
ffff
ffff
ff tt
2121
2121
21
*.2
*.1
,)()(.7
dtddt tffff ])([]*[;1
)(
2121
证明:
dxdtxt
d t dtdt ffff
,
)()(]*[
2121
令对上式交换积分次序得
dttdttdt
dxxd
ddxxdt
ffff
ff
ffff
)()(]*
)()(
.)()(]*[
2121
21
2121
[
f1
t1 t2 t3 t4
f2
t1 t2t3- t4-
0*0.
21
ffta 时,
tt
f
121
1
=
的宽度为
tt
f
342
2
=
的宽度为
证明 2;
t1
t2
时:tttb 31,
t1
t3 t4
卷积在 t>t1+t3
时开始有值时:tttc 42,
卷积在 t>t2+t4
时又将等于零。
12
1234
3142
)()(
)()(
tttt
tttt
例 8:利用位移特性及 u(t)? u(t)= r(t),
计算 y(t) = f(t)? h(t)。
解,y(t) = f(t)? h(t) = ( u(t)? u(t-1) ) * ( u(t)? u(t-2) )
=u(t)? u(t) - u(t-1)? u(t) - u(t)? u(t-2) - u(t-1)? u(t-2)
= r(t)? r(t?2) – r(t?1) + r(t-3)
)( tf
t
10
1
)( th
t
20
1
)( ty
t
20
1
1 3
t t?3
第二次作业点评,p84.2-14
)(tf
0 1
1
t
)(tf
0 1
1
t
0
1
1
t
2
)(ts
1.t<0
0 1
1
1?t t
0)(?ts
2.0<t<1
0 t 11?t
t
tdts
0
.1)(?
3.1<t<2 t
11?t
tdts
t
2.1)(
1
1
4.t>2
1?t t1
0)(?ts
)()()(),2()1()( tstftftututf 求若
)(tf
1 2
1
)(tf
1 2
1
1
2 3 4
)(ts
)()()(
)()()(
212211
21
tttsttfttf
tstftf
则若
)(ts
434
322
420
tt
tt
tt差别:第二小题就是把第一小题的卷积结果向右平移两个单位。
预习第六章前四节和第三章前两节作业,2- 12; 2- 18
h(t)f(t) hf? f(t))(th fh?
f2(t)
f3(t)
1f
3121 ffff
f2(t) f3(t)
f3(t) f2(t)
1f
1f
][ 321 fff
][ 231 fff
0
1
2
1
)]23()3([
...)]8()6([)]5()3([)]2()([)(
)()(
n
t
ntuntu
tututututututf
df
dt
df
tr 而且用,
t t
dttftftfdf )]()([)()( 21/2/1
微分器)()()( ',tfttpf
积分器)()()(
1
tftutf
p
1221.1 ffffl a weco m m u t a t i v
3121321 ][.2 fffffffl a wved i s t r i b u t i
][][.3 321321 ffffffl a wea s s o ci a t i v
*.移不变
321 fffif )()(,03201 ttffttf则二,卷积的微分和积分
1.两函数相卷积后的导数等于两函数之一的导数与另一函数相卷积,
dt
df
ff
dt
df
ff
dt
d 2
12
1
21 ][
2.两函数相卷积后的积分等于两函数之一的积分与另一函数相卷积,
dffdtff
tt
)(*][ 2121
df
dt
fd
df
dt
df
ff
t tt
)()( 2
2
1
2
2
1
21
3.推广
)()()(,)()(2)(1 tstftf nmnm则三,奇异信号的卷积特性
)()()(.1 tfttf
)()()( 00 ttftttf
)()()( 1001 tttfttttf
)(:,21 tsff若
))(( 及其各阶导数卷积t?
)()()(.2 ttt
)()()(.3 '' tfttf
t
dftutf )()()(.4
5.推广,)()()( )()( tfttf kk
)()()( 0)(0)( ttftttf kk
相当于微分运算 )()()( ' tfttpf?
)()()(1 tftutfp
相当于积分运算
)()()()()()( '' tutftuttftf
)()()()()()( '''' ttutfttuttftf
四,例题:
1.P85.2-19(a) 1
f1(t)
1 2 3 t
f2(t)
-2 2
t
解:
dttfff )]2()2()[(121
)2()2( 11 tftf
2
1-1 3 54-5 -3
f1*f2
用 P67-68图 2- 17示例解如下例题:
2
a
f1(t)
t
1
f2(t)b
t
解,
2'1 ff
2)]1()([ ftAtA
)1()( 22 tAftAf
)(1' tf
1 2 3?
21.2 ff?计算
)1()()(1 tAtAtf
22 )1()( ftAftA
)()( 2'1 tftf
tab
2 10 t
2
ab 21 t
)1(
2
tab?
32 t
21 ff
t d tab
t
0 2
t d tabt d tab
t
1
01 22
2
1
1
02 22
)1(
2
dtabtd tabdttab
t
1 2
3
2'1 ff?
=
2
4
tab
42
abtab? 21 t
)23(
4
2 ttab
32 t
3.计算下列函数的卷积结果,并化出波形,
...
2 3 5?
tf?s in2?
1 2 3 4t
1f
)(192.85 fp?
10 t
1 2
21 ff?
3
解,
0
1 )]23()3([
n
ntuntuf
)(s i n2 ttuf
0
'
1 )]23()3([)(
n
ntnttf
)()c o s1(
1
)(2 tutdf
t
dftftr
t
)()()( 2'1?
2
3
5
)('1 tf
1 2 4
0
0
)3()]2()()[c os1(
1
])23()3([)()c os1(
1
)(
n
n
nttutut
ntnttuttr
4.P85.2-19(b)
解,方法一,t<0时,
t>0时,
101 0)1(
1
)1(
21
eeedeff
t
t
t
dedeff
t
tt
1
1
)1(
1
)1(
21 2
te 2
1f
1
1
)1()1(2 tuef t
1-
方法二,用微分积分性质
)()1()1()( 11 tftuddddf
tt
d
d
dffdf
dt
dfff tt
112121 )( 需要
0)(,1l i m?
tf
t
条件为
)]1([)]1(1[ )1(21 tuetuffs t
注意积分常数的问题。
)1(11 tuf
)1()1(2 tuef t
)()1(11
)1(
)1(
)1(
)1(
)1()1()1(*1
1
1
)1(
1
)1(
1
)1(
)1()1(
)1()1(
tuede
detde
due
dt
tdu
due
tuetutue
t
t
t
t
tt
=
)1()1(1,)1()1( tuetue tt注意
).(,,)(),(
)(.5
321 thdcbthth
tha
响应所示,求子系统的冲激分别为和系统的个子系统组成,已知总线性时不变系统是由三图示
)(1 th
)(3 th
)(2 th
)(t? )(th
(a)
2
54
)(th
10
(b)
1
)(1 th
40
(c) 0
)(2 th
1
1
2
(d)
)]()([)()(
)(
321 thththth
a
可知,系统的总响应为解:由图也应为矩形波为一炬形波为一梯形波,而因
)()(
)()(
32
1
thth
thth
2
1
)]1()([2)()( 32 tututhth
)]2()1()[1()]1()()[2(
) ] }2()1()[1()]1()([{)]1()([2
)()]1()([2)( 23
tututtutut
tututtututtutu
thtututh
)(3 th
1
1
2
2
此题的关键是利用了两个不同宽度的矩形波的卷积结果是梯形波。
6.线性系统如图所示,它由几个子系统组成,已知部分子系统的冲激响应为
)1(2)(),1()( 21 tthtth
若整个系统对 sintu(t)的零状态响应如 (b)
所示,求子系统的冲激响应 h3(t)。
h2(t)
h1(t) h1(t)
h3(t)
rzs(t) 1
1 2 t
rzs(t)
(b) b
)()()()()()( 3211 ththththtth
)()1(2)1()1()( 3 thtttt
)()2()1(2)( 3 thttt
)(3 th求
)()(s i n)( thttutr
)2()1(2)()()(
)()()()(21
2)()](s i n)([
)(
s i n
1)()()s i n ()(
2
2
2
2
2
2
tttrtth
td
rd
trththt
thttut
th
td
td
td
rd
thtuttr
)()(3 trth
2
2
2
2
2
2
)(s i n
)()(s i n
)()s i n ()(
s i n
)s i n ()()(c o s
)(s i n
dt
trd
dt
td
trttu
tutt
dt
td
ttttu
dt
ttud
)(tr
)('' tr
)(tr‘
0
1
2
的宽度之和和的宽度为的面积之积与的面积为证明为有限宽度的脉冲和若
ffff
ffff
ff tt
2121
2121
21
*.2
*.1
,)()(.7
dtddt tffff ])([]*[;1
)(
2121
证明:
dxdtxt
d t dtdt ffff
,
)()(]*[
2121
令对上式交换积分次序得
dttdttdt
dxxd
ddxxdt
ffff
ff
ffff
)()(]*
)()(
.)()(]*[
2121
21
2121
[
f1
t1 t2 t3 t4
f2
t1 t2t3- t4-
0*0.
21
ffta 时,
tt
f
121
1
=
的宽度为
tt
f
342
2
=
的宽度为
证明 2;
t1
t2
时:tttb 31,
t1
t3 t4
卷积在 t>t1+t3
时开始有值时:tttc 42,
卷积在 t>t2+t4
时又将等于零。
12
1234
3142
)()(
)()(
tttt
tttt
例 8:利用位移特性及 u(t)? u(t)= r(t),
计算 y(t) = f(t)? h(t)。
解,y(t) = f(t)? h(t) = ( u(t)? u(t-1) ) * ( u(t)? u(t-2) )
=u(t)? u(t) - u(t-1)? u(t) - u(t)? u(t-2) - u(t-1)? u(t-2)
= r(t)? r(t?2) – r(t?1) + r(t-3)
)( tf
t
10
1
)( th
t
20
1
)( ty
t
20
1
1 3
t t?3
第二次作业点评,p84.2-14
)(tf
0 1
1
t
)(tf
0 1
1
t
0
1
1
t
2
)(ts
1.t<0
0 1
1
1?t t
0)(?ts
2.0<t<1
0 t 11?t
t
tdts
0
.1)(?
3.1<t<2 t
11?t
tdts
t
2.1)(
1
1
4.t>2
1?t t1
0)(?ts
)()()(),2()1()( tstftftututf 求若
)(tf
1 2
1
)(tf
1 2
1
1
2 3 4
)(ts
)()()(
)()()(
212211
21
tttsttfttf
tstftf
则若
)(ts
434
322
420
tt
tt
tt差别:第二小题就是把第一小题的卷积结果向右平移两个单位。
预习第六章前四节和第三章前两节作业,2- 12; 2- 18
h(t)f(t) hf? f(t))(th fh?
f2(t)
f3(t)
1f
3121 ffff
f2(t) f3(t)
f3(t) f2(t)
1f
1f
][ 321 fff
][ 231 fff
0
1
2
1
)]23()3([
...)]8()6([)]5()3([)]2()([)(
)()(
n
t
ntuntu
tututututututf
df
dt
df
tr 而且用,
t t
dttftftfdf )]()([)()( 21/2/1
微分器)()()( ',tfttpf
积分器)()()(
1
tftutf
p