第二节 极限的运算
Chapter2
一、极限的运算法则
二、两个重要 极限
Economic- mathematics Wednesday,July 29,200916 - 2
定理
)0(
)(lim
)(lim
)(
)(
lim)4(
)(lim)(lim)]()([lim)3(
)(lim)]([lim)2(
)(lim)(lim)]()([lim)1(
0
0
0
000
00
000
B
B
A
xg
xf
xg
xf
BAxgxfxgxf
cAxfcxcf
BAxgxfxgxf
xx
xx
xx
xxxxxx
xxxx
xxxxxx
其中一、极限的运算法则则设,)(lim,)(lim
00
BxgAxf xxxx
注意定理的使用条件
Economic- mathematics Wednesday,July 29,200916 - 3
例 2,53 1lim 2
3
2
xx
x
x
求解 )53(lim 22 xxx?
5l i m3l i ml i m 2222 xxx xx 5232 2,0
53
1l i m
2
3
2
xx
x
x )53(l i m
1l i ml i m
2
2
2
3
2
xx
x
x
xx
.37?3 123
例 1 求 )35(lim 21 xxx,
)35(lim 2
1
xx
x
.135135limlim
1
2
1
xx
xx
解
Economic- mathematics Wednesday,July 29,200916 - 4
小结,则有设,)(.1 110 nnn axaxaxf
nnxxnxxxx axaxaxf110 )l i m()l i m()(l i m 000
nnn axaxa10100 ).( 0xf?
则有且设,0)(,)( )()(.2 0 xQxQ xPxf
)(lim
)(lim
)(lim
0
0
0 xQ
xP
xf
xx
xx
xx
)(
)(
0
0
xQ
xP? ).(
0xf?
.,0)( 0 则商的法则不能应用若?xQ
Economic- mathematics Wednesday,July 29,200916 - 5
解例 3,32 1lim 2
2
1
xx
x
x
求
.,,1 分母的极限都是零分子时?x
.1 后再求极限因子先约去不为零的无穷小?x
)1)(3(
)1)(1(lim
32
1lim
12
2
1
xx
xx
xx
x
xx
3
1lim
1?
x
x
x,2
1?
)00( 型
(消去零因子法 )
Economic- mathematics Wednesday,July 29,200916 - 6
例 4,147 532l i m 23
23
xx
xx
x
求解
)( 型
.,,3 再求极限分出无穷小去除分子分母先用 x
3
3
23
23
14
7
53
2
l i m
147
532
l i m
xx
xx
xx
xx
xx
,
7
2?
为非负整数时有和当 nmba,0,0 00
n
nn
m
mm
x bxbxb
axaxa
1
10
1
10lim,,
0
0 mn
b
a?当
,,0 mn?当
.,mn 当
Economic- mathematics Wednesday,July 29,200916 - 7
,13 1lim
2
1 xx
x
x
求
)1(2
)13)(1( 2
1 x
xxx
x?
l i m
l i m xxx
x
13
12
1
2 )13)(1(l i m 1 xxxx
解例 5
2-2?
Economic- mathematics Wednesday,July 29,200916 - 8
二、两个重要极限
1s i nl i m.1 0 x xx
-10 -5 5 10
-0.2
0.2
0.4
0.6
0.8
1
-30 -20 -10 10 20 30
x
-0.2
-0.1
0.1
0.2
0.3
y
x
x
xsin
2
6366.0
4 8 16 32 64 128
9003.0 9745.0 9939.0 9984.0 9996.0 9999.0
取点少时 取点多时
.1s i n0
x
xx 时,当由表格和图形可见:
Economic- mathematics Wednesday,July 29,200916 - 9
二、两个重要极限
1s i nl i m.1 0 x xx
型未定式.1
”“
0
0
的结构式.2sin
相同注意两点:
Economic- mathematics Wednesday,July 29,200916 - 10
”“
0
0求
x
x
x
ta nl im
0?,
x xx t a nlim 0? )c o s1s in(lim 0 xx xx,
.111c o s1l i ms i nl i m 00 xx x xx
例 6
解
________;0________;0 s i nl i mta nl i m x
x
x
x
xx请问:
11
Economic- mathematics Wednesday,July 29,200916 - 11
例 8,c o s1lim 2
0 x
x
x
求解 2
2
0
2s i n2lim
x
x
x?
原式
2
0
)
2
2
s i n
(l i m
2
1
x
x
x?
.21121 2
例 7
解
x
x
x 5s i n
3t a nlim
0?
求
x
x
x
x
x
x
x
x
xx 5
3
5s i n
5
3
3ta nlim
5s i n
3ta nlim
00
.535311
”“
0
0
”“
0
0
Economic- mathematics Wednesday,July 29,200916 - 12
3030
)c o s1(t a nlims i nt a nlim
x
xx
x
xx
xx
)0(21c o s1 2 xx x?
2
1s i nt a nlim
30?
x
xx
x
30
s i nt a nlim
x
xx
x
求
20 co s1s i nco s1lim x xx xxx
例 9
解
”“
0
0
Economic- mathematics Wednesday,July 29,200916 - 13
ex xx )11(lim.2
二、两个重要极限
x
xx)11(?
1
2
25.2 49.2 705.2 718.259.2 71827.2
1052 100001000100
x
xx)11(? 88.2
732.2 720.2 71828.27183.2
10000?1000?10? 100? 100000?
-1 10
7
-5 10
6
5 10
6
1 10
7
2.71828
2.71828
2.71828
Economic- mathematics Wednesday,July 29,200916 - 14
从上表和图中可以看出,当 x 无限增大时,函数
x
x
)
1
1(? 变化的大致趋势,可以证明当 x 无限增大时,
x
x
)
1
1(? 的极限是一个无理数,其值为?718282828.2?e,
即
ex xx )11(lim:记为
ex xx )11(lim.2
二、两个重要极限
Economic- mathematics Wednesday,July 29,200916 - 15
1s i nl i m.1 0 x xx
ex xx )11(lim.2
型未定式.1
”“
0
0
的结构式.2sin
型未定式.1,, )01(
的结构式.2 )11(
互为倒数二、两个重要极限
Economic- mathematics Wednesday,July 29,200916 - 16
例 10,)11(lim x
x x求解 1])11[(lim
x
x x原式,1e
例 11,)23(l i m 2 x
x x
x
求解 22 ])
2
11[(l i m?
x
x x原式
.1 22 ee
4)
2
11(?
x
Chapter2
一、极限的运算法则
二、两个重要 极限
Economic- mathematics Wednesday,July 29,200916 - 2
定理
)0(
)(lim
)(lim
)(
)(
lim)4(
)(lim)(lim)]()([lim)3(
)(lim)]([lim)2(
)(lim)(lim)]()([lim)1(
0
0
0
000
00
000
B
B
A
xg
xf
xg
xf
BAxgxfxgxf
cAxfcxcf
BAxgxfxgxf
xx
xx
xx
xxxxxx
xxxx
xxxxxx
其中一、极限的运算法则则设,)(lim,)(lim
00
BxgAxf xxxx
注意定理的使用条件
Economic- mathematics Wednesday,July 29,200916 - 3
例 2,53 1lim 2
3
2
xx
x
x
求解 )53(lim 22 xxx?
5l i m3l i ml i m 2222 xxx xx 5232 2,0
53
1l i m
2
3
2
xx
x
x )53(l i m
1l i ml i m
2
2
2
3
2
xx
x
x
xx
.37?3 123
例 1 求 )35(lim 21 xxx,
)35(lim 2
1
xx
x
.135135limlim
1
2
1
xx
xx
解
Economic- mathematics Wednesday,July 29,200916 - 4
小结,则有设,)(.1 110 nnn axaxaxf
nnxxnxxxx axaxaxf110 )l i m()l i m()(l i m 000
nnn axaxa10100 ).( 0xf?
则有且设,0)(,)( )()(.2 0 xQxQ xPxf
)(lim
)(lim
)(lim
0
0
0 xQ
xP
xf
xx
xx
xx
)(
)(
0
0
xQ
xP? ).(
0xf?
.,0)( 0 则商的法则不能应用若?xQ
Economic- mathematics Wednesday,July 29,200916 - 5
解例 3,32 1lim 2
2
1
xx
x
x
求
.,,1 分母的极限都是零分子时?x
.1 后再求极限因子先约去不为零的无穷小?x
)1)(3(
)1)(1(lim
32
1lim
12
2
1
xx
xx
xx
x
xx
3
1lim
1?
x
x
x,2
1?
)00( 型
(消去零因子法 )
Economic- mathematics Wednesday,July 29,200916 - 6
例 4,147 532l i m 23
23
xx
xx
x
求解
)( 型
.,,3 再求极限分出无穷小去除分子分母先用 x
3
3
23
23
14
7
53
2
l i m
147
532
l i m
xx
xx
xx
xx
xx
,
7
2?
为非负整数时有和当 nmba,0,0 00
n
nn
m
mm
x bxbxb
axaxa
1
10
1
10lim,,
0
0 mn
b
a?当
,,0 mn?当
.,mn 当
Economic- mathematics Wednesday,July 29,200916 - 7
,13 1lim
2
1 xx
x
x
求
)1(2
)13)(1( 2
1 x
xxx
x?
l i m
l i m xxx
x
13
12
1
2 )13)(1(l i m 1 xxxx
解例 5
2-2?
Economic- mathematics Wednesday,July 29,200916 - 8
二、两个重要极限
1s i nl i m.1 0 x xx
-10 -5 5 10
-0.2
0.2
0.4
0.6
0.8
1
-30 -20 -10 10 20 30
x
-0.2
-0.1
0.1
0.2
0.3
y
x
x
xsin
2
6366.0
4 8 16 32 64 128
9003.0 9745.0 9939.0 9984.0 9996.0 9999.0
取点少时 取点多时
.1s i n0
x
xx 时,当由表格和图形可见:
Economic- mathematics Wednesday,July 29,200916 - 9
二、两个重要极限
1s i nl i m.1 0 x xx
型未定式.1
”“
0
0
的结构式.2sin
相同注意两点:
Economic- mathematics Wednesday,July 29,200916 - 10
”“
0
0求
x
x
x
ta nl im
0?,
x xx t a nlim 0? )c o s1s in(lim 0 xx xx,
.111c o s1l i ms i nl i m 00 xx x xx
例 6
解
________;0________;0 s i nl i mta nl i m x
x
x
x
xx请问:
11
Economic- mathematics Wednesday,July 29,200916 - 11
例 8,c o s1lim 2
0 x
x
x
求解 2
2
0
2s i n2lim
x
x
x?
原式
2
0
)
2
2
s i n
(l i m
2
1
x
x
x?
.21121 2
例 7
解
x
x
x 5s i n
3t a nlim
0?
求
x
x
x
x
x
x
x
x
xx 5
3
5s i n
5
3
3ta nlim
5s i n
3ta nlim
00
.535311
”“
0
0
”“
0
0
Economic- mathematics Wednesday,July 29,200916 - 12
3030
)c o s1(t a nlims i nt a nlim
x
xx
x
xx
xx
)0(21c o s1 2 xx x?
2
1s i nt a nlim
30?
x
xx
x
30
s i nt a nlim
x
xx
x
求
20 co s1s i nco s1lim x xx xxx
例 9
解
”“
0
0
Economic- mathematics Wednesday,July 29,200916 - 13
ex xx )11(lim.2
二、两个重要极限
x
xx)11(?
1
2
25.2 49.2 705.2 718.259.2 71827.2
1052 100001000100
x
xx)11(? 88.2
732.2 720.2 71828.27183.2
10000?1000?10? 100? 100000?
-1 10
7
-5 10
6
5 10
6
1 10
7
2.71828
2.71828
2.71828
Economic- mathematics Wednesday,July 29,200916 - 14
从上表和图中可以看出,当 x 无限增大时,函数
x
x
)
1
1(? 变化的大致趋势,可以证明当 x 无限增大时,
x
x
)
1
1(? 的极限是一个无理数,其值为?718282828.2?e,
即
ex xx )11(lim:记为
ex xx )11(lim.2
二、两个重要极限
Economic- mathematics Wednesday,July 29,200916 - 15
1s i nl i m.1 0 x xx
ex xx )11(lim.2
型未定式.1
”“
0
0
的结构式.2sin
型未定式.1,, )01(
的结构式.2 )11(
互为倒数二、两个重要极限
Economic- mathematics Wednesday,July 29,200916 - 16
例 10,)11(lim x
x x求解 1])11[(lim
x
x x原式,1e
例 11,)23(l i m 2 x
x x
x
求解 22 ])
2
11[(l i m?
x
x x原式
.1 22 ee
4)
2
11(?
x