§4 级行列式的性质行列式的计算是一个重要的问题,也是一个很复杂的问题,级行列式一共有项,计算它就需做个乘法.当较大时,是一个相当在的数字.直接从定义来计算行列式几乎是不可能的事.因此有必要进一步讨论行列式的性质.利用这些性质可以化简行列式的计算.
在行列式的定义中,虽然每一项是个元素的乘积,但是由于这个元素是取自不同的行与列,所以对于某一确定的行中个元素(譬如)来说,每一项都含有其中的一个且只含有其中的一个元素.因之,级行列式的项可以分成组,第一组的项都含有,第二组的项都含有等等.再分别把行的元素提出来,就有
 (1)
其中代表那些含有的项在提出公因子之后的代数和.至于究竟是哪一些项的和暂且不管,到§6 再来讨论.从以上讨论可以知道,中不再含有第行的元素,也就是全与行列式中第行的元素无关.由此即得,
性质2

这就是说,一行的公因子可以提出去,或者说以一数乘行列式的一行相当于用这个数乘此行列式.
令,就有如果行列式中一行为零,那么行列式为零.
性质3
.
这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行以外全与原来行列式的对应的行一样.
性质3显然可以推广到某一行为多组数的和的情形.
性质4 如果行列式中有两行相同,那么行列式为零.所谓两行相同就是说两行的对应元素都相等.
性质5 如果行列式中两行成比例,那么行列式为零.
性质6 把一行的倍数加到另一行,行列式不变.
性质7 对换行列式中两行的位置,行列式反号.
例1 计算级行列式

例2 计算行列式
.
由于行列戒,上(下)三角形行列式容易计算,因此计算行列式的一个基本方法是利用行列式的性质,把行列式化成上(下)三角形行列式进行计算.
例3 一个级行列式,假设它的元素满足
,(4)
证明,当为奇数时,此行列式为零.