第三章 习题课一,本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱,
2.利用傅立叶积分分析非周期信号的连续谱,
3.理解信号的时域与频域间的关系,
4.用傅立叶变换的性质进行正逆变换,
5.掌握抽样信号频谱的计算及抽样定理,
二,付立叶级数 (三角形式 )
)s inc o s()( 11
1
0 tnbtnaatf n
n
n
T dttfTa )(10
t d tntf
T
a
Tn 1
c o s)(2
Tn t d tntfTb 1s in)(2?
)c o s ()(
1
10 n
n
n tncctf
00 ac
22
nnn bac
n
n
n a
ba r c tg
指数形式
1)( tjn
n
n eFtf


dtetf
T
F
T
tjn
n?
1)(1?
有限项傅立叶级数的方均误差
)](
2
1
[)( 2
1
22
0
2
2
n
N
n
nn baatf
最小均方误差等于最小误差条件値 满足所给出的证明方均误差时,引起的误差函数为代替当用项构成一个有限级数式傅立叶级数中选取若从周期信号的三角形
.2;
,)43(),33(89.1
)(
1
)(
);()()(
)()(
)s i nc o s()(
12
.
2
2
2
1
2
11
1
0
nn
T
T NNN
Nn
N
n
N
n
nN
bap
dtt
T
tE
tStft
tftS
tnbtnaatS
N






)](21[)( 2
1
22
0
22
n
N
n
nn baatf
dttfTtf
T
)(1)( 22
证明,设
)s inc o s()( 111
1
10 tnbtnaats n
N
n
nN
)()()( tstft NN
0
b
E
0
a
E
n
N
n
N?
dtt
T
tE
T
T
NnN
)(
1
)(
2
2
22

0
a
E
....
a
E
a
E
n
N
1
NN
0

0.,,,
21

n
NNN
b
E
b
E
b
E

)s inc o s()( 010
1
10 tnbtnaatS n
N
n
nN
)()()( tstft NN
2
010
1
10
2 )]s i nc o s()([)( tnbtnaatft
n
N
n
nN
注意在要求均方误差 En的过程中

1
000 )s inc o s()(
n
nn tnwbtnwaatf
其中 an,bn分别用 p89(3-3),( 3-4)表达均方误差 En为
dtt
T
E N
T
Tn )(
1 22
2




N
n
N
n
nnnnnn bbaabaatf
1 1
11
2
1
2
1
2
0
2 )()(
2
1
)(



N
n
N
n
N
n
nnnnnn babbaaatf
1 1 1
222
1
2
1
2
0
2 )(
2
1)(
2
1)(
2
1)(
若,
nnnnN bbaaT h e nE 11,..0
)(
2
1
[)(
1
222
0
2?

N
n
nnN baatfE
例一,P163.3-11提示
)(1 tf
20s in tt?
420 t
)
2
3()
2
1()(
112 tftftf
差越小。项数选得越多,均方误傅立叶系数是唯一的若要均方误差最小,则
.2
.1
463.1 7 0?p例二:
2
T
2
T?
2
2
E
)(tf
TT?
t
)附录立叶变换为(解:单个梯形脉冲的傅 3.380
]
4
)(
4
)(
[
2
)(
4
)(
s i n
4
)(
s i n
)(
8
)(
21





T
Sa
T
Sa
ET
TT
T
E
F
2
T
2
T?
2
2

E )(tf )(?jF
t
)(2TE
T
4
TT?
)(1 tf
2
T2T?
2
2

E
)()( 1 tftf?
TT? t
0

)()( 1 FF

0,0)()( 011 naatiti?
td tnti
T
b
T
n 0
0
1 s in)(
2

)s ins in(
2
0
0
0 td tntd tn
T
T


)]2c o s (1[2
T
n
n


0? T
)(1 ti
)(2 tv)(1 ti
例三,P164.3-13
1.当 STs 105
nb
)(
4
od dn
n?
T
2
0?
k H z
T
f 1 0 010
1010
11 5
60


tkttv 002 s in3.127100s in
4
)(

sTsif 20,10..2
0)(......50
1020
11
26 tvt h e nsTf?
)e v e n(n0
sTsif 30,15..3
k H z
T
f 1 0 0
3
1
1030
11
6
tkttv 003 3s i n4.421003s i n
3
4
)(

三,傅立叶变换的定义



dt)t(f)0(F,dte)t(f)j(F tj





djFfdejFtf tj )(
2
1
)0(,)(
2
1
)(
典型信号的 傅立叶变换
)(
1
)(

j
tu
j
t
2
)s g n (?
)
2
()]
2
()
2
([)(


SaEtutuEtG
)(21
1)(

t

j
EEe t

)(2 00 EEe tj ( 为正实数)0?
)]()([c o s 000 EtE
)]()([s i n 000 jEtE
( 为正实数)?
*抽样信号的傅立叶变换
)n(Fp
T
1
)t(p).t(s)t(f
n
sn
s
s?


dtetp
T
p
s
s
T
tjn
s
n?
)(1
*冲激抽样
)(
1
)()(



n
s
sN
S nFTnTttf
)]([)()( nTtSanTftf m
N
m

应满足何条件?
的截止频率抽样,理想低通滤波器若以应满足何条件?抽样间隔完全恢复想低通滤波器后,能要使抽样信号通过一理抽样的带限信号对一最高频率为例四:
c
f
msT
T
tf
tfHz
1.2
.1
),(
)(4 0 0.
ms25.1T
ms25.1
4 0 02
1
f2
1
Hz4 0 0f)t(f.1
c
m
所以抽样间隔应满足则奈奎斯特抽样间隔为的最高频率由题意,解:
HzHzfHz
ffff
f
K H z
T
f
msT
c
mscm
c
c
600)4001000(400
1
1
,1.2



即应满足由抽样定理,
则抽样频率已知抽样间隔四,用傅立叶变换的性质求傅立叶变换
)(2)( ftF
)(1)(
a
F
a
atf )()( Ftf
bjeFbtf )()(
abje
a
F
a
batf /)(
1
)(?


)()( 00 Fetf tj
)]()([
2
s i n)(
000
FFjttf
)]()([21c o s)( 000 FFttf
)()()( Fj
dt
tdf?
)()( Fj
dt
fd nn?
d
dFtfjt )()()(
d
Fdtfjt nn )()(
)()0(
)(
)(
F
j
F
df
t


)0)0(,..(
)(
)(

Fif
j
F
df
t



duuFtf
jt
tf
)()()0(
)(
)0)0(.(,)(
)(


fifduuF
jt
tf?
)().()()( 2121 FFtftf
)()(
2
1
)().( 2121
FFtftf
例五,P168.3-27
)]
2
()([2s i n)( Ttutut
T
Etf
)]2()([2c o s2)(' TtututTETtf
)]
2
()([2s in)2()('' Ttutut
T
E
T
tf
)]2()([2 TttET
)]
2
()([2)()()2( ''2 TttE
T
tftf
T

)1(
2
)()()()
2
( 222


Tj
eE
T
FjF
T

22
2
)
2
(
)1(
2
)(

T
eE
T
F
T
j
)()())(( 2'' jFjtfF?
).(?F例六:求图示波形的
t
1
1
2
2
3
3
)(tf
t
)(tf‘
dt
df对时间信号求导得解,
)3()1(
)]3()2([
)]2()([)(
'



tt
tutu
tututf

式用 Bf 1)(
32
5
)
2
()(2)( jj
jj
eeeSaeSaF


)()()()('


f
j
Fdft
)(
])
2
()(2[
1
)(
32
5




jj
j
j
eeeSaeSa
j
F
例七:求下式的傅立叶变换


1
1.1
2tF

t
F 1.2


t
t
F 0
c o s
.3
][.4 tF
)][ s g n (.5 1F
]2[ c o s.6 1F
)]([.7 ttuF )]([.8 1?uF?
解,1.p170,双边指数函数可知,
22
2


a
ae ta 2
1
1
2
1

te
根据傅立叶变换对 称性,

ee
t
.
2
1.2
1
1
2
))((2......)(..2 jjjtfif


)(2)(2)( ujdjtj
jt
j
)]([)(2
1
tjFuj
t

)s g n ()(2
1
jjuj
t

)]s g n ()[ s g n (
2
c o s
00
0
jt
t
ttftft h e n
t
tfif 011 c o s)()(,,
1
)(..3
由 p133.(3-65)
)s g n (
1
j
t

)(21.4 t
)(2)](2[ ' jjd djt
jt?)('?
)(2),,,,,(2 '' jtjt
)s g n (22,2)s g n (.5 jtjt?
)]2()2([2c o s.6t?
2c o s2)]2()2([ tt
)]2()2([212c o s tt
t
j
t
jF

2
1)][ s g n (1
jtu
1)()(.7因
d
dFtjtf )()(
2
'
2
'
1
)(
)(
1
)()](
1
[)(





j
j
j
jd
d
jttu
t
j
tu
ut
jt
j
tu



2
)(
2
1
)(
)(2)(
1
)(
1
)(.8



所以:
由部分对称性:
因例八,设 代表图 (a)所示信号 f(t)之频谱,
)()()( jeFF?
不求 F(w)而完成下列运算 (求 p168.3-25)
)(.1

dF )(.3
dF?

s i n2
)(.4
5.画出 Re[F(w)]所对应信号波形的偶部。
2
1? 2 3
解,
)()()]1([ ))(( FeFetfF jj
应为实偶,
)0(,2 F
)(?F
,.....2,1,0.....2)( kk
)(.,0.,2)( t h e nkifk
62]42[
2
1
)()()0(.2 0


dttfdtetfF tj

422)0(20)(
2
1)(.3

ftdeFtf tj
0
s i n2
)(
2
1
)(.4

tdeFty tj?
)0(2
s in2
)( ydF


623)]1()1([)(2 tututf
3
4
4
3222
3
2s in
.2
2)(
1
.1
.
ad
a
a
d
a


证明下列积分例九:



dFf
dttfF
)(
2
1
)0(
)()0(
0)(lim
0)(lim


F
tf
t

dFdttf


22
)(
2
1
)(
22
2
)()(.1

a
a
Fetf ta令
aa
a
d
a
a
f




22
22
2
2
2
1
1)0(
3222
2
22
2
2)(
1
)
2
(
2
1
a
d
a
d
a
a
dte
ta





的等腰三角形为底宽为令在本题中 atf 4)(,.2
)(tf
a
t
2
1? )2( at?
0
)2( at?
a? a
a2
1
a? a
a2
1
据卷积定理得 f(t)的傅立叶变换为:
2
2
2 s in2)s in2.
2
1
()(
a
aa
a
a
a
F
3
4
4
2
2
2
2
2
2
3
2s in
)
s in2
(
2
1
)
2
1
)(),(
ad
a
d
a
a
dt
t
Ftf
a
a







代入能量公式中:把


s ins inc o sc o s
)c o s (



)(2
)s i nc o s(
)()(
0
2
01
1
01
2
0
22
tfa
tbta
atft
n
N
n
n
N

)(
2
1 2
1
1
2
1 n
N
n
n ba
)s inc o s()(2
)s inc o s(2
010
1
1
010
1
10
tbtatf
tbtaa
n
N
n
n
n
N
n
n



0
)(
1
1
1 nnn
N
n
n
bbaa
)()()()( 0022



nn
nFnTttf
)(2)(
]
4
)(
4
)(
[
2
)(1
)(
1
0
00
01



nFF
nT
Sa
nT
Sa
ET
T
nF
T
F
n
n
n




时:令?2?T
三角函数是正交函数
)2.3(0.s i n.c o s 1110
0
dttmtnTt
t

)3.3(
)(
)(
0
s ins in
0
0
1
2
11 nm
nm
td tmtn
Tt
t
T


)3.3(
)(
)(
0
c o sc o s
0
0
1
2
11 nm
nm
t d tmtn
Tt
t
T


2
2
1
2
2
1 0s i n0c o s
T
T
T
T t d tndtn