1
一、双缝衍射 ( Double-slit diffraction)
1、实验装置:
第五节 多缝的夫琅合费衍射
S
L1
L2
y1
y
x
P
x1
d
a
2
2、强度计算:
)
2
c o s (
2
2
s i n
2
)e x p ()e x p (
)e x p (
~~
1
)
22
(
)
22
(
1
)
22
(
)
22
(
11
111
d
km
k m a
k m a
aC
ydi k m yCdyi k m yC
dyi k m yyECyE
ad
ad
ad
ad
111111 e x p),(,dydxfyyfxxikyxECyxE?
x1
d
a
y1
3
P
y
d
f
狭缝1
狭缝2
点的位相差是双缝对应 P
s i nkdk m d
)
2
(c o s
s i n
4)(
)(I,
2
2
2
0
2
0
k m d
IyI
aC
k m a
设双缝衍射是单缝衍射和双缝干涉的组合
4
)2(c o s2 k m d
)2(c o ss i n4)( 2
2
0
k m dIyI
)(yI
z
6 5 4 3 2 1 0 1 2 3 4 5 6
0
0,5
1
y
i
c o s
i
2
2
y
2
15 0 15
0
0,5
1
k
i
4 y?( )
i
z
i
k
i
4 z
i
i
0 50 100 150 200 250 300
0
2
4
ad 3?
dsinθ0 λ 2λ 3λ 4λ-4λ -3λ -2λ - λ
asinθλ-λ
asinθ
3、条纹分析
2s in
5
双缝干涉 合成单缝衍射
)2(c o ss i n4)( 2
2
0
k m dIyI
6
4,瑞利干涉仪( Rayleigh interferometer)
S
L1 L2
D
0级
1级
-1级
S
L1 L2
D
1级
2级
0级
B1
B2
e
qe
=(n2-n1)l=q?
用途
实验装置
工作原理
7
二、多缝衍射( Multiple-slit diffraction)
…...
a
d
N个夫琅和费单缝衍射的叠加。
8
1.光强分布:
每个单缝:
s i n~
0EE =
s i n22 kafa k y=
设 fys in
相邻两个缝中心之间到 P点的光程差
s i n
s i n
d
d
2
=
位相差:
(由双缝衍射的结果引申到此)
P
y
d
f
狭缝1
狭缝2
9
合成的振幅为:
)(s i n~...s i n~s i n~s i n~~ 1
0
2
000
Niii eEeEeEEE =
]...[s i n~ )( 120 1 Niii eeeE?
i
iN
e
eE
1
1
0
)(s i n~
)(
)(s i n~
///
///
222
222
0
iii
iNiNiN
eee
eeeE
2/)1(0 2/s i n
)2/s i n (s i n~?
NieNE
10
所以 P点处光强度为:
220* ]2/s i n
)2/s i n ([s i n~~
NIEEI )(
光强度由两个因子决定:
2)(
sin
是单缝衍射因子,
2]2/s in
)2/s in ([
N 是多缝干涉因子。
11
2、条纹分析
( 1)干涉因子的影响
220* ]2/s i n
)2/s i n ([s i n~~
NIEEI )(
1)主极大值条件:
md
md
=
=
s i n
s i n 22当 时,
22]2/s i n
)2/s i n ([ NN?
在?方向上产生极大,极值为:
2
0
2
m a x
s i n )(
INI?
12
当
1,2,1')'(s i n
1,2,1')
'
(
2
Nm
N
m
md
Nm
N
m
m
=
2)极小值条件, 2]2/s in )2/s in ([N
时有零值,且在两主极大间有 N-1个零值主极大的半角宽度:
c o sNd
Δθ
13
3) 次极大的个数与强度,
y
z
f
x
2
2 0 2 4
0
10
20
2
2
2
2
)sin(
)sin(
N
N=4
在两个极大之间有 N- 1个零点,有 N- 2个次级极值。 次级极大值的强度只有主极大值的 4%左右。
dsin?
m? (m+1)?
14
( 2)衍射因子的影响
( 3)缺级现象及条件:
adnm
( 4)缝数对条纹分布的影响
(主极大位置、亮纹宽窄、亮纹光强)
z
6 5 4 3 2 1 0 1 2 3 4 5 6
0
0,5
1
2sin
β0 π 2π-π-2π
15
例题 (12-5):
用波长为?的光波垂直照射一个 N=4,d=4a的衍射屏,这里 d为相临两缝间隔,a为缝宽,
试求:
1) 指出缺级级次;
2) 绘出光强 I随 sin?变化的分布曲线 (?为衍射角 ) ;
3) 当?=a/2正入射 时,最多能够看到多少条亮纹;
4) 计算前 3个主极大与中央极大的比值 。
16
Homework (12-5)
P285 13&19
下一节
17
2
e x p
2
2
s i n
2
s i n2
2
e x p
2
e x p
2
e x p
2
e x p
)
22
(e x p)
22
(e x p
1
)e x p (
1
)e x p (
)
22
(
)
22
(
11
)
22
(
)
22
(
11
d
i k m
km
k m a
k m a
i
i k m
d
i k m
a
i k m
a
i k m
i k m
d
i k m
ad
i k m
ad
i k m
i k m
i k m ydi k m y
i k m
dyi k m yA
ad
ad
ad
ad
18
2
e x p
2
2
s i n
2
s i n2
2
e x p
2
e x p
2
e x p
2
e x p
)
22
(e x p)
22
(e x p
1
)e x p (
1
)e x p (
)
22
(
)
22
(
11
)
22
(
)
22
(
11
d
i k m
km
k m a
k m a
i
i k m
d
i k m
a
i k m
a
i k m
i k m
d
i k m
ad
i k m
ad
i k m
i k m
i k m ydi k m y
i k m
dyi k m yB
ad
ad
ad
ad
19
2
c o s
2
2
s i n
2
2
c o s2
2
2
s i n
2
e x p
2
e x p
2
2
s i n
)(
k md
k ma
k ma
aC
k md
km
k ma
C
d
ik m
d
ik m
km
k ma
C
BACyE
一、双缝衍射 ( Double-slit diffraction)
1、实验装置:
第五节 多缝的夫琅合费衍射
S
L1
L2
y1
y
x
P
x1
d
a
2
2、强度计算:
)
2
c o s (
2
2
s i n
2
)e x p ()e x p (
)e x p (
~~
1
)
22
(
)
22
(
1
)
22
(
)
22
(
11
111
d
km
k m a
k m a
aC
ydi k m yCdyi k m yC
dyi k m yyECyE
ad
ad
ad
ad
111111 e x p),(,dydxfyyfxxikyxECyxE?
x1
d
a
y1
3
P
y
d
f
狭缝1
狭缝2
点的位相差是双缝对应 P
s i nkdk m d
)
2
(c o s
s i n
4)(
)(I,
2
2
2
0
2
0
k m d
IyI
aC
k m a
设双缝衍射是单缝衍射和双缝干涉的组合
4
)2(c o s2 k m d
)2(c o ss i n4)( 2
2
0
k m dIyI
)(yI
z
6 5 4 3 2 1 0 1 2 3 4 5 6
0
0,5
1
y
i
c o s
i
2
2
y
2
15 0 15
0
0,5
1
k
i
4 y?( )
i
z
i
k
i
4 z
i
i
0 50 100 150 200 250 300
0
2
4
ad 3?
dsinθ0 λ 2λ 3λ 4λ-4λ -3λ -2λ - λ
asinθλ-λ
asinθ
3、条纹分析
2s in
5
双缝干涉 合成单缝衍射
)2(c o ss i n4)( 2
2
0
k m dIyI
6
4,瑞利干涉仪( Rayleigh interferometer)
S
L1 L2
D
0级
1级
-1级
S
L1 L2
D
1级
2级
0级
B1
B2
e
qe
=(n2-n1)l=q?
用途
实验装置
工作原理
7
二、多缝衍射( Multiple-slit diffraction)
…...
a
d
N个夫琅和费单缝衍射的叠加。
8
1.光强分布:
每个单缝:
s i n~
0EE =
s i n22 kafa k y=
设 fys in
相邻两个缝中心之间到 P点的光程差
s i n
s i n
d
d
2
=
位相差:
(由双缝衍射的结果引申到此)
P
y
d
f
狭缝1
狭缝2
9
合成的振幅为:
)(s i n~...s i n~s i n~s i n~~ 1
0
2
000
Niii eEeEeEEE =
]...[s i n~ )( 120 1 Niii eeeE?
i
iN
e
eE
1
1
0
)(s i n~
)(
)(s i n~
///
///
222
222
0
iii
iNiNiN
eee
eeeE
2/)1(0 2/s i n
)2/s i n (s i n~?
NieNE
10
所以 P点处光强度为:
220* ]2/s i n
)2/s i n ([s i n~~
NIEEI )(
光强度由两个因子决定:
2)(
sin
是单缝衍射因子,
2]2/s in
)2/s in ([
N 是多缝干涉因子。
11
2、条纹分析
( 1)干涉因子的影响
220* ]2/s i n
)2/s i n ([s i n~~
NIEEI )(
1)主极大值条件:
md
md
=
=
s i n
s i n 22当 时,
22]2/s i n
)2/s i n ([ NN?
在?方向上产生极大,极值为:
2
0
2
m a x
s i n )(
INI?
12
当
1,2,1')'(s i n
1,2,1')
'
(
2
Nm
N
m
md
Nm
N
m
m
=
2)极小值条件, 2]2/s in )2/s in ([N
时有零值,且在两主极大间有 N-1个零值主极大的半角宽度:
c o sNd
Δθ
13
3) 次极大的个数与强度,
y
z
f
x
2
2 0 2 4
0
10
20
2
2
2
2
)sin(
)sin(
N
N=4
在两个极大之间有 N- 1个零点,有 N- 2个次级极值。 次级极大值的强度只有主极大值的 4%左右。
dsin?
m? (m+1)?
14
( 2)衍射因子的影响
( 3)缺级现象及条件:
adnm
( 4)缝数对条纹分布的影响
(主极大位置、亮纹宽窄、亮纹光强)
z
6 5 4 3 2 1 0 1 2 3 4 5 6
0
0,5
1
2sin
β0 π 2π-π-2π
15
例题 (12-5):
用波长为?的光波垂直照射一个 N=4,d=4a的衍射屏,这里 d为相临两缝间隔,a为缝宽,
试求:
1) 指出缺级级次;
2) 绘出光强 I随 sin?变化的分布曲线 (?为衍射角 ) ;
3) 当?=a/2正入射 时,最多能够看到多少条亮纹;
4) 计算前 3个主极大与中央极大的比值 。
16
Homework (12-5)
P285 13&19
下一节
17
2
e x p
2
2
s i n
2
s i n2
2
e x p
2
e x p
2
e x p
2
e x p
)
22
(e x p)
22
(e x p
1
)e x p (
1
)e x p (
)
22
(
)
22
(
11
)
22
(
)
22
(
11
d
i k m
km
k m a
k m a
i
i k m
d
i k m
a
i k m
a
i k m
i k m
d
i k m
ad
i k m
ad
i k m
i k m
i k m ydi k m y
i k m
dyi k m yA
ad
ad
ad
ad
18
2
e x p
2
2
s i n
2
s i n2
2
e x p
2
e x p
2
e x p
2
e x p
)
22
(e x p)
22
(e x p
1
)e x p (
1
)e x p (
)
22
(
)
22
(
11
)
22
(
)
22
(
11
d
i k m
km
k m a
k m a
i
i k m
d
i k m
a
i k m
a
i k m
i k m
d
i k m
ad
i k m
ad
i k m
i k m
i k m ydi k m y
i k m
dyi k m yB
ad
ad
ad
ad
19
2
c o s
2
2
s i n
2
2
c o s2
2
2
s i n
2
e x p
2
e x p
2
2
s i n
)(
k md
k ma
k ma
aC
k md
km
k ma
C
d
ik m
d
ik m
km
k ma
C
BACyE