0
2 pi?
¦È
0
1
rr
1 r2+
ÿ
ÿ
ÿ?
d
ÿ
ÿ
ÿ?
d 2 2? pi? 2 pi¡ú 2.60258=
.,ÔÚ Ö± ½Ç ×ø ±ê Ï Çó ²» ³ö ·û ºÅ ½â Ó¦ Óà ¼« ×ø ±ê ±ä »»
1?
1
x
1 x2
1 x2?
y1
1 x2+ y2+
ÿ
ÿ
ÿ
d
ÿ
ÿ
ÿ
d
1?
1
xln 1? x+( )? x 1+( )?[ ]
1
2 2+

ln 1? x+( )? x 1+( )?[ ]
1
2? 2+

ÿ
ÿ
ÿ? d¡ú 2.60239=
1,D={(x,y)|x^2+y^2<1} Àý ¼Æ Ëã ¶þ ÖØ »ý ·Ö »ý ·Ö Óò
2,Àû Óà ÒÔ ÉÏ ¸÷ ÖÖ ±ä »» ¼Æ Ëã ÖØ »ý ·Ö
Jc r ¦Õ,z,( ) simplify r¡ú
Jc r ¦Õ,z,( )
r
Rc r ¦Õ,z,( )0d
d
¦Õ
Rc r ¦Õ,z,( )0d
d
z
Rs r ¦Õ,z,( )0d
d
r
Rc r ¦Õ,z,( )1d
d
¦Õ
Rc r ¦Õ,z,( )1d
d
z
Rc r ¦Õ,z,( )1d
d
r
Rc r ¦Õ,z,( )2d
d
¦Õ
Rc r ¦Õ,z,( )2d
d
z
Rc r ¦Õ,z,( )2d
d

:=Rc r ¦Õ,z,( )
r cos ¦Õ( )?
r sin ¦Õ( )?
z

:=
(3) Öù ×ø ±ê ±ä »»
Js r ¦Õ,?,( ) simplify sin ¦Õ( ) r2?¡ú
Js r ¦Õ,?,( )
r
Rs r ¦Õ,?,( )0d
d
¦Õ
Rs r ¦Õ,?,( )0d
d
Rs r ¦Õ,?,( )0d
d
r
Rs r ¦Õ,?,( )1d
d
¦Õ
Rs r ¦Õ,?,( )1d
d
Rs r ¦Õ,?,( )1d
d
r
Rs r ¦Õ,?,( )2d
d
¦Õ
Rs r ¦Õ,?,( )2d
d
Rs r ¦Õ,?,( )2d
d

:=Rs r ¦Õ,?,( )
r sin ¦Õ( )? cos?( )?
r sin ¦Õ( )? sin?( )?
r cos ¦Õ( )?

:=
(2) Çò ×ø ±ê ±ä »»
Jpolar r ¦È,( ) simplify Jpolar r ¦È,( )¡úJp r ¦È,( ) r
Rp r ¦È,( )0d
d
¦È
Rp r ¦È,( )0d
d
r
Rp r ¦È,( )1d
d
¦È
Rp r ¦È,( )1d
d

:=Rp r ¦È,( ) r cos ¦È
( )?
r sin ¦È( )?

:=
(1) ¼« ×ø ±ê ±ä »»
1 Jackob±ä »» µÄ ÐÐ ÁРʽ
.±¾ ¹¤ ×÷ Ò³ ¼Ì Ðø ½ø ÐÐ ¶à Ôª º¯ Êý µÄ ÖØ »ý ·Ö µÄ ʵ Ñé
,Polar coordinatesÓà ¼« ×ø ±ê ±ä »» Çó »ý ·Ö1.
,Sphere coordinatesÓà Çò ×ø ±ê ±ä »» Çó »ý ·Ö2.
,Cylindrical coordinatesÓà Öù ×ø ±ê ±ä »» Çó »ý ·Ö3.
,ÖØ »ý ·Ö ÔË Ëã »ý ·Ö ±ä »»( )΢ »ý ·Ö ÔË Ëã Áù6 ʵ Ñé
0
a
r
0
pi
2
¦Õ
0
pi
2
¦Èr5 sin ¦Õ( )? cos ¦Õ( )? sin ¦È( )3? cos ¦È( )?
ÿ
ÿ? d
ÿ
ÿ? d
ÿ
ÿ? d 148 a6?¡ú
J r2 sin ¦È( )?=x y? z? r3 sin ¦Õ( )? cos ¦Õ( )? sin ¦È( )2? cos ¦È( )?=
0
a
x
0
a2 x2?
y
0
a2 x2? y2?
zx y? z?
ÿ
d
ÿ
d
ÿ
d
1
48 a
6?¡ú
(2) u=xyz D={(x,y)| x^2 +y^2+z^2<a^2,a>0}¼Æ Ëã º¯ Êý ÔÚ ÉÏ µÄ »ý ·Ö
V2 a b,c,( ) 43 pi? c? a? b?¡úV2 a b,c,( ) 8
0
pi
2
¦È
0
1
¦Ñc 1 ¦Ñ2 a? b? ¦Ñ?
ÿ
d
ÿ
ÿ? d?:=
J a b,¦Ñ,¦È,( ) a b? ¦Ñ?:=y b ¦Ñ,¦È,( ) b ¦Ñ? sin ¦È( )?:=x a ¦Ñ,¦È,( ) a ¦Ñ? cos ¦È( )?:=
8
0
a
x
0
b 1 x
2
a2

y
0
c 1 x
2
a2
y
2
b2
z1
ÿ
ÿ
d
ÿ
ÿ
d
ÿ
ÿ
d?
4
3 c? a?
2 ln b( )? ln 1?
b2

+

1?
b2

1
2
¡ú
Ö± ½Ó, ÔÚ Ö± ½Ç ×ø ±ê Ï Çó ³ö µÄ ·û ºÅ ½â Ϊ
V a b,c,( ) 43 a? b? c? pi?¡úV a b,c,( ) 8 a? b? c?
0
pi
2
0
pi
2
¦Õ
0
1
rr2 sin ¦Õ( )?
ÿ
d
ÿ
ÿ? d
ÿ
ÿ? d?:=
(1) ¼Æ Ëã ÍÖ Çò Ìå x
2
a2
y2
b2
+ z
2
c2
+ 1=,µÄ Ìå »ý
2 Àý ¼Æ Ëã Èý ÖØ »ý ·Ö
0
2pi
¦È
1
2
rln r2( ) r?
ÿ
d
ÿ
d 8 pi? ln 2( )? 3 pi¡ú
1<x^2+y^2<4 ÔÚ Ô² »· Óò ÉÏ ¼Æ Ëã ln x2 y2+( ),,µÄ »ý ·Ö Ó¦ Óà ¼« ×ø ±ê
0
2pi
¦È
0
1
t1 t?( )1 t+( )
1
2 1
2?
ÿ
ÿ
ÿ
ÿ? d
ÿ
ÿ
ÿ
ÿ? d
1
2 pi
2? pi?¡ú1 r2?
1 r2+
substitute r t=,1 t?( )1 t+( )
1
2
¡ú2r dr? dt=r2 t=
0
2 pi?
¦È
0
1
r1 r
2?
1 r2+
r?
ÿ
ÿ
ÿ
d
ÿ
ÿ
ÿ
d 12 pi2? pi?¡ú 1.793= ÎÞ ·û ºÅ ½â
1?
1
x
1 x2
1 x2?
y1 x
2? y2?
1 x2+ y2+
ÿ
ÿ
ÿ
ÿ?
d
ÿ
ÿ
ÿ
ÿ?
d 1.793=
f,g xOyÇú Ãæ ÒÔ ¼° ƽ Ãæ Ëù Χ ³É µÄ
.Á¢ Ìå µÄ Ìå »ý Èç ÓÒ Í¼ Ëù ʾ
f g,
g x y,( ) 2 x? y3? 4+:=f x y,( ) 1 x?:=
2 1 0 1
1
2
3
3 6
h u( )
u
h x( ) 3 2 x? 4+( ):=
(5) y^3=2x+4 x+z=1,z=0,¼Æ Ëã ÓÉ Çú Ãæ ºÍ Æ½ Ãæ Ëù Χ ³É µÄ Á¢ Ìå Ìå »ý
V a( ) 435 a3? pi?¡úV a( ) 27 a3?
0
2pi
¦È
0
pi
¦Õ
0
1
rr8 sin ¦Õ( )5? cos ¦Õ( )2? sin ¦È( )2? cos ¦È( )2?
ÿ
d
ÿ
d
ÿ
d?:=
ÔÙ Òý Èë Çò ×ø ±ê
V a( ) 435 a3? pi?¡ú
V a( ) 8 27? a3?
0
1
u
0
1 u2?
v
0
1 u2? v2?
wu2 v2? w2?
ÿ
ÿ? d
ÿ
ÿ? d
ÿ
d:=
z a w3?=y a v3?=x a u3?=
(4) x^(2/3)+y^(2/3)+z^(2/3)<a^(2/3),¼Æ Ëã Ëù ½ç ¶¨ µÄ ±Õ Óò µÄ Ìå »ý
,ÓÒ Í¼ Ϊ ¸Ã Á¢ Ìå ÔÚ µÚ Ò» ØÔ Ïß ÖÐ µÄ Ò» ²¿ ·Ö
I a( ) 1?3 pi? a5?¡úI a( )
0
2pi
¦Õ
0
a
r
a?
a
zz2 r2?( ) r?
ÿ
d
ÿ
d
ÿ
d:=
¼Æ Ëã º¯ Êý u z2 x2? y2?= D={(x,y)| x^2 +y^2<a^2,|z|<a},.ÔÚ ÉÏ µÄ »ý ·Ö Ó¦ Óà Öù ×ø ±ê ±ä »»
0
2pi
¦Õ
0
pi
¦È
0
1
rr
2
1 r2?
r2? sin ¦È( )?
ÿ
ÿ
ÿ
d
ÿ
ÿ
ÿ
d
ÿ
ÿ
ÿ
d 34 pi2?¡ú
(3) ¼Æ Ëã º¯ Êý u x
2 y2+ z2+
1 x2? y2? z2?
= D={(x,y)| x^2 +y^2+z^2<1}ÔÚ ÉÏ µÄ »ý ·Ö
V
0
3 6
y
y3 4?
2
1
x
0
1 x?
z1?ÿ? d?ÿ
ÿ?
d
ÿ
ÿ
d:= V 8128 3 6?¡ú V 5.257=
V1
2?
1
x
0
3 2x 4+
y
0
1 x?
z1?ÿ? d
ÿ
d
ÿ
d:= V1
81
28
3 6?¡ú V2
0
3
z
2?
1 z?
x
0
3 2x 4+
y1
ÿ
d
ÿ
d
ÿ
d:= V2
81
28
3 6?¡ú