§5.2利用留数计算实积分 思路: ()òb a dxxf () () () ( )?òòò = ==+ n k kll a b bfidzzfdzzfdxxf 1 res2 1 p则 1l a bl ①f(x)在实轴上无奇点 ②f(z)在 上无奇点1l ③ 易算( )ò 1l dzzf 一、无穷积分 () :ò¥ ¥- dxxf ( ) kbzzf 中有奇点在实轴上无奇点 0Im, > ( ) 0,;,,2,1 ?×¥?= zfzznk 当K () ( ) 0Im1 res2 >= ¥ ¥- ?ò = z n k kbfidxxf p则 证:考虑 () () () ( ) l n k kc R Rl bfidzzfdxxfdzzf R ?òòò =- =+= 1 res2p则 () ( ) 0Im1 res2lim: >=¥? ¥ ¥- ?òò =+¥? z n k kcR bfidxxfR R p当 () ()òò ×= RR cc z dzzfzdzzf又 ()( ) 0max ?? ??××£ ¥?zRRzfz p () ( ) 0Im1 res2 >= ¥ ¥- ?ò =z n k kbfidxxf p ò¥¥- ++ dxxx x 1: 24 2 例 () 224 224 2 121 zzz zzz zzf -++=++= ( ) ( ) 22222424 1121: zzzzzzz -+=-++=++分母 ( )( ) 011 22 令 =+-++= zzzz 2 3 2 1 2 411 2,1 iz ±-= -±-= 2 3 2 1, 2 3 2 1 3,14,3 iziz +±=±= 上半平面 () 011 1 1 1 42 24 2 ???? ++ =++×=× ¥?z zz z zz zzzfz úú? ù êê? é ÷÷? ? ??è ? ++ ÷÷? ? ??è ? +-=2 3 2 1res 2 3 2 1res2 ififiI p ( ) ( )( )( )( )ú ? ù ê? é -----ê? é= ? 4321 2 1 1 lim2 zzzzzzzz zzzi zz p ( ) ( )( )( )( )ú ? ù ê? é -----+ ? 4321 2 3 1 lim zzzzzzzz zzz zz ( )是偶函数xfQ 3210 24 2 p =++ò¥ dxxx x 问: ?1 1 0 2 =+ò ¥ dxx① () izzzfdxx ±=+=+ò ¥ ¥- 奇点,1 11 1 22 () 0 11 1 1 2 2 ???? + =+=× ¥?z z z z zzfz () ppp =×==+ = ¥ ¥-ò izz iifidxx 212res21 1 2 ( )是偶函数xfQ 21 1 0 2 p= +ò ¥ dx x ②下半平面呢? ppp 343 0 3 ,,:?1 1 iii eeedxx 奇点③ =+ò¥ ?1 1 2 =-ò¥ ¥- dxx④ () () 0,sincos 0 ?¥? ty ü ?í ìò¥ zfzdx px pxxf二、 () ()[ ]?ò = > ¥ = n k z ipzezfipxdxxf 1 0Im0 rescos p则 () ()[ ]?ò = > ¥ = n k z ipzezfpxdxxf 1 0Im0 ressin p 问:①积分区间为什么是而不是ò ¥ 0 ò ¥ ¥- ②为什么要考虑f(x)的奇偶 ( ) ( ) 00 00 ????×???? ?? zz zfzzf 而不是③为什么 思路: ( ) ,为偶函数①若 xf () ()òò ¥ ¥- ¥ = dxexfpxdxxf ipx 2 1cos 0 则 ( ) ,为奇函数若 xf () ()òò ¥ ¥- ¥ = dxexf ipxdxxf ipx 2 1sin 0 则 pxipxe ipx sincos +=②又 ( ) 沿图中围道积分 依照上例考虑 ipzezfRR- Rc ¥?R当 () () ( )[ ]?òò =+ - k l ipb kc ipzR R ipx k R ebfidzezfdxexf 内res2p () ()òò ¥? ¥ ¥- + Rc ipz R ipx dzezfdxexf lim ( )[ ]? >= k z ipb k kebfi 0Imres2p () 0lim =ò ¥? Rc ipz R dzezf由约旦引理 () ( )[ ]?ò >¥ = k z ipb k kebfipxdxxf 0Im0 res2cos2 p则 () ,为偶函数若 xf () ( )[ ]?ò >¥ =k z ipb k kebfipxdxxf 0Im0 rescos p ( ) ,为奇函数若 xf () ( )[ ]?ò >¥ = k z ipb k kebfipxdxxfi 0Im0 res2sin2 p () ( )[ ]?ò >¥ =k z ipb k kebfpxdxxf 0Im0 ressin p ( ) 0,0, sin: 0 222 >> +ò ¥ bBdx bx Bxx例 () ( )222 bz zzf + = ( ) 在实轴上无极点由 ,0222 ibzbz ±=?=+ ( ) 021 1 2 4 4 2 2 3 4224222 ???? ++ =++= + ¥?z z b z b z zzbz z bz z ( ) ibz iBze bz zI =ú ú ? ù êê? é + =\ 2 22 res ( ) ( ) ( )( ) ibz ibz ibz ibzibz zeibz dz d = ? ú? ù ê? é -+--= 22 2 !12 1lim b Be b Be bBbB 44 -- == pp ( ) 0, ?¥? zfz约旦引理: ( ) 0?ò Rc ipz dzezf则 有好处对当 0, ?¥? - pyez 0, >×= - peee pyipxipzQ 此条件比前一个弱 证: () ()òò -£ p qqq q 0 sincos ideRezfdzezf ipRipR c ipz R () () òò -- ×£= p qp q qq 0 sin 0 sin max deRzfRdezf pRpR () ò -×= 2 0 sinmax2 p q qdeRzfR pR 0 A q ( )qY 2p p qp2=y qsin=y qpq 2sin 3Q òò -- £ 20 22 0 sin p qpp q qq dede pRpR ()ò Rc ipz dzezf代入上式 ( )pRepR --= 12p ( ) () 0max1 ?? ??-£ ¥?- zpR zfepp 也可这样: () ()òò £ RR c ipz c ipz dzezfdzezf max 解析ipzeQ ( )ipRipR R R ipx c ipz ee ipdxedzeR -==--òò 1 () () 0sin2max ????×£ ¥?ò R c ipz pR pzfdzezfR pRp sin2-= 三、R(cosθ,sinθ) ( )ò ò = -- ÷÷? ? ??è ? -+=p qqq2 0 1 11 1 2,2sin,cos z dzizi zzzzRdR ( ) 1res2 <= zzfip i zzzzez i 2sin,2cos 11 -- - =+== qqq则令 iz dzdidedz i =\×= qqq ò +p qq20 cos25: d例 ( ) òò == - ++=++= 1 21 1 155 1 zz iz dz zz z iz dz zz ò ±-=++-= 2 2151512 zdzzzi 奇点为 2 215 +-=z 不要求奇点在上半平面或不在实轴。 在被积区域内只取一个奇点 ( ) 2152res1 1 1 i z izfz z -= + -== 内在 21 22 21cos25 2 0 pp q qp =×-= +ò i id ò¥0 sin: dxx x例 式实轴上有奇点不能套公0=x 0=+++ òòòò- - R ix ccR ix dxxedxxe R e e e 考虑沿图中围道积分 Ⅰ ⅡⅢ Ⅳ ??? ?í ì ?? -=?¥? òò òòò ¥ ¥- ¥ - - 0 0 0 0 dxxe dxxedxxeR ixR ixix R e e e ec Rc 0 RR- e- e òòò ¥-- =+\ 0 sin2 dxx xiRR ee 11lim:11 0 ×-==÷ ? ?? è ? × ò ? p ee idzezezz iziz 故由小圆弧引理 òò ¥¥ ==\ 00 2sinsin2 pp x xidxx xi 小圆弧引理 ( ) 上连续在若 21,: qqqq ££=- ir reazczf ,01 ???? ¥?zzQ 0???? ¥?ò Rc iz R dzze故由约旦引理 ( ) ( ) l=- ? zfaz r 0 lim且 ( ) ( )lqq 12lim -=ò ¥? idzzf rcr 则 1q 2q rc r 即要证: 时使 dde <-?>$>" azr,0,0 () el <-ò rc dzzf ( )òò -==- 2 1 12 q q q q qqq idrerieaz dz i i c r Q () ( )( )òò - --=-rr cc dzaz azzfzf ll ( )( ) ( ) ( ) eqqeqql =-¢<-×--£ 1212 max r r azzf 0,0,coscos: 0 2 33-= ò¥ badxx bxaxI例 p2 abI -=答: òòòò +++-- R iax c iaz c iaz R iax dxxezezedxxe R e e e 2222 ec Rc 0 RR- e- e 02222 =ú ? ù ê? é +++- òòòò - - R ibx c ibz c ibz R ibx dxxezezedxxe R e e e òòò ¥-- =+?íì ? ¥? 0 222 cos20 dxx axdxxedxxeR R iax R iax e e e òòò =-= ---- R iaxR iax R iax dxxedxxedxxe ee e 222 òòò ¥-- =+ 0 222 cos2 dxx bxdxxedxxe R ibx R ibx e e同理: 00 22 == òò RR c ibz c iaz dzzedzze ( )ibeiaez eezr ibziaz r ibziaz r ×-×=-×? ?? 020 limlim,0Q ( )bai -= ( ) ( )babaiidzz ee ibziaz -=-×-=-ò¥ pp 0 2 ( )abdxx bxax -=-ò¥ p 0 2 coscos2 上次课:学习了用留数计算几种典型的实积分。 ()ò¥ ¥- dxxf① ()ò¥ ty ü ?í ì 0 sin cos dx px pxxf② ò¥0 sin dxx x③ ( )ò p qqq2 0 sin,cos dR④ 在应用以上公式时要注意 一、公式的应用条件 如对于①: ( ) ( ) ()是否无奇点?上在 是否只有孤立奇点中在 zfznkb zfz k 0Im?,...,1 0Im1 == >o () 0lim2 ? = ¥? zzf z o 二、思想 () () ( ) 内 化 l n k kl b a bfidzzfdxxf ?òò = =? 1 res2p ()òb a dxxf对于实积分 三、方法有二 [ ] ( ) 1,1: lxfba 奇点的一段为在实轴上不含视法一 o R-:1l如① R ( )¥?R :1l② 0 R ( )¥?R :1l③ e R ÷???è? ¥? ? R 0e nn lllllll +++= L o 2132 ,...,,2 使围道补充 ( )( )¥??-++=ò¥ ¥- RRcll R ,021 1 :l② RR- Rc :l如① ¥?+= Rcll R ,1 RR- Rc [ ] ÷ ? ?? è ? ¥? ?+-?-++= RcRcll R 0, 1 ee e ( )ò l dzzf用留数计算o3 () () òòò l iz l ipz l dzezdzezfdzzf 1;;: ③②如① :l③ ec Rc 0 RR- e- e 法二:作变量代换,即 () () () () ()[ ]zgfzFdzzFdxxf l xgzb a 1, -= =?? ?? òò ( ) ()òò ????= l ez dzzfdR iqp qqq2 0 sin,cos如④ 四、关键 围道的选取 () ?? ?íì 圆、半圆、弧、矩形等通常选简单方便 上无奇点在 :,2 1 o o lzf