§5.2利用留数计算实积分
思路: ()òb
a
dxxf
() () () ( )?òòò
=
==+
n
k
kll
a
b
bfidzzfdzzfdxxf
1
res2
1
p则
1l
a bl
①f(x)在实轴上无奇点
②f(z)在 上无奇点1l
③ 易算( )ò 1l dzzf
一、无穷积分
() :ò¥
¥-
dxxf
( ) kbzzf 中有奇点在实轴上无奇点 0Im, >
( ) 0,;,,2,1 ?×¥?= zfzznk 当K
() ( )
0Im1
res2
>=
¥
¥- ?ò
=
z
n
k
kbfidxxf p则
证:考虑
() () () ( )
l
n
k
kc
R
Rl
bfidzzfdxxfdzzf
R
?òòò
=-
=+=
1
res2p则
() ( )
0Im1
res2lim:
>=¥?
¥
¥- ?òò
=+¥?
z
n
k
kcR bfidxxfR
R
p当
() ()òò ×=
RR cc z
dzzfzdzzf又
()( ) 0max ?? ??××£ ¥?zRRzfz p
() ( )
0Im1
res2
>=
¥
¥- ?ò
=z
n
k
kbfidxxf p
ò¥¥- ++ dxxx x 1: 24
2
例
() 224 224 2 121 zzz zzz zzf -++=++=
( ) ( ) 22222424 1121: zzzzzzz -+=-++=++分母
( )( ) 011 22
令
=+-++= zzzz
2
3
2
1
2
411
2,1 iz ±-=
-±-=
2
3
2
1,
2
3
2
1
3,14,3 iziz +±=±= 上半平面
() 011
1
1
1
42
24
2
????
++
=++×=× ¥?z
zz
z
zz
zzzfz
úú?
ù
êê?
é
÷÷?
?
??è
? ++
÷÷?
?
??è
? +-=2
3
2
1res
2
3
2
1res2 ififiI p
( ) ( )( )( )( )ú
?
ù
ê?
é
-----ê?
é=
? 4321
2
1
1
lim2 zzzzzzzz zzzi
zz
p
( ) ( )( )( )( )ú
?
ù
ê?
é
-----+ ? 4321
2
3
1
lim zzzzzzzz zzz
zz
( )是偶函数xfQ
3210 24
2 p
=++ò¥ dxxx x
问: ?1 1
0 2
=+ò ¥ dxx①
() izzzfdxx ±=+=+ò ¥
¥-
奇点,1 11 1 22
() 0
11
1
1
2
2 ????
+
=+=× ¥?z
z
z
z
zzfz
() ppp =×==+
=
¥
¥-ò izz
iifidxx 212res21 1 2
( )是偶函数xfQ
21
1
0 2
p=
+ò
¥ dx
x
②下半平面呢?
ppp 343
0 3
,,:?1 1 iii eeedxx 奇点③ =+ò¥
?1 1 2 =-ò¥
¥-
dxx④
() () 0,sincos
0
?¥?
ty
ü
?í
ìò¥ zfzdx
px
pxxf二、
() ()[ ]?ò
=
>
¥ = n
k
z
ipzezfipxdxxf
1
0Im0 rescos p则
() ()[ ]?ò
=
>
¥ = n
k
z
ipzezfpxdxxf
1
0Im0 ressin p
问:①积分区间为什么是而不是ò
¥
0 ò
¥
¥-
②为什么要考虑f(x)的奇偶
( ) ( ) 00 00 ????×???? ?? zz zfzzf 而不是③为什么
思路: ( ) ,为偶函数①若 xf
() ()òò ¥
¥-
¥ = dxexfpxdxxf ipx
2
1cos
0
则
( ) ,为奇函数若 xf
() ()òò ¥
¥-
¥ = dxexf
ipxdxxf
ipx
2
1sin
0
则
pxipxe ipx sincos +=②又
( )
沿图中围道积分
依照上例考虑 ipzezfRR-
Rc
¥?R当
() () ( )[ ]?òò =+
- k l
ipb
kc
ipzR
R
ipx k
R
ebfidzezfdxexf 内res2p
() ()òò
¥?
¥
¥-
+
Rc
ipz
R
ipx dzezfdxexf lim
( )[ ]? >=
k
z
ipb
k
kebfi
0Imres2p
() 0lim =ò
¥? Rc
ipz
R
dzezf由约旦引理
() ( )[ ]?ò >¥ =
k
z
ipb
k
kebfipxdxxf
0Im0 res2cos2 p则
() ,为偶函数若 xf
() ( )[ ]?ò >¥ =k
z
ipb
k
kebfipxdxxf
0Im0 rescos p
( ) ,为奇函数若 xf
() ( )[ ]?ò >¥ =
k
z
ipb
k
kebfipxdxxfi
0Im0 res2sin2 p
() ( )[ ]?ò >¥ =k
z
ipb
k
kebfpxdxxf
0Im0 ressin p
( ) 0,0,
sin:
0 222
>>
+ò
¥ bBdx
bx
Bxx例
() ( )222
bz
zzf
+
=
( ) 在实轴上无极点由 ,0222 ibzbz ±=?=+
( ) 021
1
2
4
4
2
2
3
4224222 ????
++
=++=
+
¥?z
z
b
z
b
z
zzbz
z
bz
z
( ) ibz
iBze
bz
zI
=ú
ú
?
ù
êê?
é
+
=\ 2
22
res
( ) ( ) ( )( ) ibz
ibz
ibz ibzibz
zeibz
dz
d
=
? ú?
ù
ê?
é
-+--= 22
2
!12
1lim
b
Be
b
Be bBbB
44
--
== pp
( ) 0, ?¥? zfz约旦引理:
( ) 0?ò
Rc
ipz dzezf则
有好处对当 0, ?¥? - pyez
0, >×= - peee pyipxipzQ
此条件比前一个弱
证: () ()òò -£ p qqq q
0
sincos ideRezfdzezf ipRipR
c
ipz
R
() () òò -- ×£= p qp q qq
0
sin
0
sin max deRzfRdezf pRpR
() ò -×= 2
0
sinmax2 p q qdeRzfR pR
0
A
q
( )qY
2p
p
qp2=y
qsin=y
qpq 2sin 3Q
òò -- £ 20
22
0
sin p qpp q qq dede pRpR
()ò
Rc
ipz dzezf代入上式
( )pRepR --= 12p
( ) () 0max1 ?? ??-£ ¥?- zpR zfepp
也可这样:
() ()òò £
RR c
ipz
c
ipz dzezfdzezf max
解析ipzeQ ( )ipRipR
R
R
ipx
c
ipz ee
ipdxedzeR -==--òò 1
() () 0sin2max ????×£ ¥?ò R
c
ipz pR
pzfdzezfR
pRp sin2-=
三、R(cosθ,sinθ)
( )ò ò
=
--
÷÷?
?
??è
? -+=p qqq2
0
1
11 1
2,2sin,cos z dzizi
zzzzRdR
( ) 1res2 <= zzfip
i
zzzzez i
2sin,2cos
11 -- -
=+== qqq则令
iz
dzdidedz i =\×= qqq
ò +p qq20 cos25: d例
( ) òò == - ++=++= 1 21 1 155
1
zz iz
dz
zz
z
iz
dz
zz
ò ±-=++-= 2 2151512 zdzzzi 奇点为
2
215 +-=z
不要求奇点在上半平面或不在实轴。
在被积区域内只取一个奇点
( ) 2152res1
1
1
i
z
izfz
z
-=
+
-== 内在
21
22
21cos25
2
0
pp
q
qp =×-=
+ò i
id
ò¥0 sin: dxx x例
式实轴上有奇点不能套公0=x
0=+++ òòòò-
-
R ix
ccR
ix
dxxedxxe
R e
e
e
考虑沿图中围道积分
Ⅰ ⅡⅢ Ⅳ
???
?í
ì
??
-=?¥?
òò
òòò
¥
¥-
¥
-
-
0
0
0
0 dxxe
dxxedxxeR
ixR
ixix
R
e
e
e
ec
Rc
0 RR- e- e
òòò ¥-- =+\ 0 sin2 dxx xiRR ee
11lim:11
0
×-==÷
?
??
è
? × ò
?
p
ee
idzezezz iziz 故由小圆弧引理
òò ¥¥ ==\ 00 2sinsin2 pp x xidxx xi
小圆弧引理
( ) 上连续在若 21,: qqqq ££=- ir reazczf
,01 ???? ¥?zzQ 0???? ¥?ò Rc
iz
R
dzze故由约旦引理
( ) ( ) l=-
?
zfaz
r 0
lim且
( ) ( )lqq 12lim -=ò
¥?
idzzf
rcr
则
1q
2q
rc
r
即要证:
时使 dde <-?>$>" azr,0,0
() el <-ò
rc
dzzf
( )òò -==- 2
1
12
q
q q
q
qqq idrerieaz dz i
i
c r
Q
() ( )( )òò - --=-rr cc
dzaz azzfzf ll
( )( ) ( ) ( ) eqqeqql =-¢<-×--£
1212
max r
r
azzf
0,0,coscos:
0 2
33-= ò¥ badxx bxaxI例
p2 abI -=答:
òòòò +++-- R
iax
c
iaz
c
iaz
R
iax
dxxezezedxxe
R e
e
e 2222
ec
Rc
0 RR- e- e
02222 =ú
?
ù
ê?
é +++- òòòò -
-
R ibx
c
ibz
c
ibz
R
ibx
dxxezezedxxe
R e
e
e
òòò ¥-- =+?íì ? ¥? 0 222 cos20 dxx axdxxedxxeR R
iax
R
iax
e
e
e
òòò =-= ---- R
iaxR iax
R
iax
dxxedxxedxxe
ee
e
222
òòò ¥-- =+ 0 222 cos2 dxx bxdxxedxxe R
ibx
R
ibx
e
e同理:
00 22 == òò
RR c
ibz
c
iaz
dzzedzze
( )ibeiaez eezr ibziaz
r
ibziaz
r
×-×=-×?
?? 020
limlim,0Q
( )bai -=
( ) ( )babaiidzz ee
ibziaz
-=-×-=-ò¥ pp
0 2
( )abdxx bxax -=-ò¥ p
0 2
coscos2
上次课:学习了用留数计算几种典型的实积分。
()ò¥
¥-
dxxf①
()ò¥
ty
ü
?í
ì
0 sin
cos dx
px
pxxf②
ò¥0 sin dxx x③
( )ò p qqq2
0
sin,cos dR④
在应用以上公式时要注意
一、公式的应用条件
如对于①:
( )
( ) ()是否无奇点?上在
是否只有孤立奇点中在
zfznkb
zfz
k 0Im?,...,1
0Im1
==
>o
() 0lim2
?
=
¥?
zzf
z
o
二、思想
() () ( )
内
化
l
n
k
kl
b
a
bfidzzfdxxf ?òò
=
=?
1
res2p
()òb
a
dxxf对于实积分
三、方法有二
[ ] ( ) 1,1: lxfba 奇点的一段为在实轴上不含视法一 o
R-:1l如① R
( )¥?R
:1l② 0 R ( )¥?R
:1l③ e R ÷???è? ¥?
?
R
0e
nn lllllll +++= L
o
2132 ,...,,2 使围道补充
( )( )¥??-++=ò¥
¥-
RRcll R ,021 1
:l② RR-
Rc
:l如① ¥?+= Rcll R ,1
RR-
Rc
[ ] ÷
?
??
è
?
¥?
?+-?-++=
RcRcll R
0,
1
ee
e
( )ò
l
dzzf用留数计算o3
() () òòò
l
iz
l
ipz
l
dzezdzezfdzzf 1;;: ③②如①
:l③ ec
Rc
0 RR- e- e
法二:作变量代换,即
() () () () ()[ ]zgfzFdzzFdxxf
l
xgzb
a
1, -= =?? ?? òò
( ) ()òò ????=
l
ez dzzfdR iqp qqq2
0
sin,cos如④
四、关键
围道的选取
()
??
?íì
圆、半圆、弧、矩形等通常选简单方便
上无奇点在
:,2
1
o
o lzf