第四节 全微分及其应用
一 。 全微分的定义
?? 2? ′t ?a ·ˉ ?y 3á 1μ μ? ?? ±? μ? á? £·
1 £? ′t ?a ·ˉ ?y ),( yxfz = ?ú 3á ),( yxP ?? Dú 3? ±a ?? ?? ?? xD ·ê yD
3á ?? ?? ?? ?a
zD = ),(),( yxfyyxxf -D+D+
2 £? ′t ?a ·ˉ ?y ),( yxfz = ?ú 3á ),( yxP ?? Dú 3? ±a ?? ?? ?? xD 3á ??
?? ?? ?a ),(),( yxfyxxf -D+
′t ?a ·ˉ ?y ),( yxfz = ?ú 3á ),( yxP ?? Dú 3? ±a ?? ?? ?? yD 3á
?? ?? ?? ?a
),(),( yxfyyxf -D+
3 £? ′t ?a ·ˉ ?y ),( yxfz = ?ú 3á ),( yxP ?? Dú 3? ±a ?? ?? ?? xD 3á ?? ?¢
2? ?a ),( yxf
x
xD
′t ?a ·ˉ ?y ),( yxfz = ?ú 3á ),( yxP ?? Dú 3? ±a ?? ?? ?? yD 3á ??
?¢ 2? ?a ),( yxf
y
yD
£¨ ?a ?í £? ),( yxf
x
·ê ),( yxf
y
?? ),( yxfz = 2? ±e ?? Dú ±a ?? x ·ê ±a ??
y 3á ?? 31 ?y £?
μ? ?Y ?? ?a ·ˉ ?y ?í £? ·ˉ ?y ?? ?? D? ·ˉ ?y ?¢ 2? 3á ?? ?é
)()( 0 xodyxxxfy D+=D+D¢=D a ?? ?a £? 3± xD ? 0 ?± £? yD - dy ? 0
ì? à? é? ?? ′t ?a ·ˉ ?y ),( yxfz = ?ú 3á ),( yx ?? ?¢ 1° ?? ?¢ 2? 3á μ? á? £·
?? ?? ·ˉ ?y ),( yxfz = ?ú ?? Dò D áú à? ?? 3á 2| ′1 ?? ?¢ 2? £? á? á? ±?
·ˉ ?y ?ú D áú ?? ?¢ 2? ?£
′¨ ?? ?? ?? ·ˉ ?y ),( yxfz = 3á ?? ?? ??
zD = ),(),( yxfyyxxf -D+D+
?? ±í ?? ?a )( royBxAz +D+D=D £? ?a ?í A £? B °? ?? ?3 Dú xD £? yD
′? o? D? x £? y Dí ?? £?
22
)()( yx D+D=r £? ?ò ±? ·ˉ ?y ),( yxfz = ?ú
3á ),( yx ?? ?¢ 2? £? ′?
dz = yBxA D+D £? ±? ?a ·ˉ ?y ),( yxfz = ?ú 3á ),( yx 3á ?? ?¢ 2? ?£
函数在点 (x,y)连续, 偏导数存在, 可微及偏导数连续之间
有如下的关系,
偏导数连续 → 可微 ↗ 连续
↘ 偏导数存在
反之不成立 ( 对于一元函数, 可导和可微是等价的 )
′¨ ?í 1 ?£ ?? ?¢ ±? ?? í?
?¤£· ?? ?¢ ? zD = ),(),( yxfyyxxf -D+D+ = yBxA D+D + )( ro £?
?a ?í
22
)()( yx D+D=r £?
?ò 2è
0
0
lim
?D
?D
y
x 0=D z £? 12
0
0
lim
?D
?D
y
x ),(),( yxfyyxxf =D+D+ £?
?¤±ì
′¨ ?í 2 ?£ ?? ?¢ ? ?? 31 ?y
x
z
?
?
£?
y
z
?
?
±? 2? ?ú £? ?? ?ú dz = yBxA D+D ?í £?
A=
x
z
?
?
£? B=
y
z
?
?
?ò 2è £? ?? ?¢ 2? dz =
x
z
?
?
xD +
y
z
?
?
yD
£¨ ?ò ?a 3? ±a ?? 3á ?? ?? ?ê 3? Dú 3? ±a ?? 3á ?¢ 2? £? 12
dyydxx =D=D,£? ?ò 2è £? ·ˉ ?y ),( yxfz = ?ú 3á ),( yx 3á ?? ?¢ 2?
dz =
x
z
?
?
xD +
y
z
?
?
yD ?° ?? í2 ±? dz =
x
z
?
?
dx +
y
z
?
?
dy £? ?y ?a ·ˉ ?y 3á ??
?¢ 2? ?ò ?a dz
z
u
dy
y
u
dx
x
u
du
?
?
+
?
?
+
?
?
= £?
?¤£· ?? ?¢ ? zD = ),(),( yxfyyxxf -D+D+ = yBxA D+D + )( ro £?
é? ±e £? 3± xD =0 ?ò yD =0 ?± £? ?ì ?o ?° ±? ?¢ £? °¢ 2? ±e ±? ?a £·
)(),(),( yoyByxfyyxf D+D=-D+
)(),(),( xoxAyxfyxxf D+D=-D+
2? ±e ±y ?? yD ?ò xD ?? ·ó £? ?o ±? ?? yD ? 0 ?ò xD ? 0 ?ó 1? ìT £? ??
3à A=
x
z
?
?
£? B=
y
z
?
?
£? ?¤±ì
′¨ ?í 3 ?£ ?? 31 ?y
x
z
?
? £?
y
z
?
? ?? í? ±? ?? ?¢
?¤?? £? Dí íè ?¤?? 1? P ?£ 24 £¨ oì á? £?
?3 3à 3¢ ?à 3á ?? D| μà ?a 3? ?a ?¤à? ),( yxfz = ?ú 3á ),( yx ?? ?¢ £?
?ê ?? ?a ?¤à?
0
l i m
?r r
dzz -D
=0 £? ?° ?ê ?? ?¤à?
0
0
lim
?D
?D
y
x
22
)()(
),(),(),(),(
yx
yyxfxyxfyxfyyxxf
yx
D+D
D-D--D+D+
=0
?y 1 £? ?¤à? ·ˉ ?y == ),( yxfz
0,0
0,
22
22
22
=+
1+
+
yx
yx
yx
xy
?ú 3á £¨ 0 £? 0 £? 3á ?? 31 ?y 2? ?ú 3? ?ú μà 3á °? ?? ?¢ ?£
?¤£· )0,0(xf = 0lim ?D x x fxf D -D+ )0,0()0,0( =0 £? ê? ?í £? )0,0(yf =0
)]0,0()0,0([ fyxfdzz -D+D+=-D - ])0,0()0,0([ yfxf
yx
D+D-
=
22
)()( yx
yx
D+D
DD
£?
0
l i m
?r r
dzz -D
=
0
0
lim
?D
?D
y
x
22
)()( yx
yx
D+D
D×D
3¢ ?à 3o
xky
x
D=D
?D 0
lim
22
2
))(1(
)(
xk
xk
D+
D
=
2
1 k
k
+
01 £¨ è? k ′? ±a £? £?
?ò 2è è? μ? ·ˉ ?y ?ú 3á £¨ 0 £? 0 £? °? ?? ?¢ ?£
由此可见,函数在某点可微保证了函数在该点
的一阶偏导数必定存在;反之,函数在某点的
一阶偏导数存在,不能保证函数在该点可微 。
?y 2 £? ?¤à? ·ˉ ?y == ),( yxfz
0,0
0,
22
22
22
=+
1+
+
yx
yx
yx
xy
?ú 3á £¨ 0 £? 0 £? ?? í? ?£ £¨ P ?£ 13 3ú 8 éà £?
?¤£· )(
2
1
0)(
222
yxxyyx +£?3- £?
D? 0)0,0(),(
22
-
+
=-
yx
xy
fyxf e<+£
22
2
1
yx ?? ?a £?
?? ?? ed 2= £? á? á? ?? ?? 0>e £? 3± d<-+-<
22
)0()0(0 yx
?± £?
±? Dí e<-
+
0
22
yx
xy
£? ?¤±ì
由例 1和例 2的结论可见, 二元函数即使在某点连续, 偏导数也
存在, 还是不能肯定函数在该点可微 。
?y 3 £? ?ó ·ˉ ?y xyez = 3á ?? ?¢ 2? 1° ?ú 3á £¨ 1 £? 2 £? 3á ?3
oà £·
x
z
?
?
= x
y
e )(
2
x
y
- £?
y
z
?
?
= x
y
e
x
1
× £? dz = x
y
e )(
2
x
y
- d x + x
y
e
x
1
× dy
= )
1
(
2
x
- x
y
e (y d x - x d y ) £?
2
1
=
=
y
xdz = )2(
2
dydxe --
?y 4 £? ?ó ·ˉ ?y
x
yz = 3±
2.0,1.0,1,2 -=D=D== yxyx
?± 3á ?? ?? ?? ·ê ?? ?¢ 2?
oà £· ),(),( yxfyyxxfz -D+D+=D
=
2
1
1.2
8.0
2
1
1.02
2.01
-=-
+
-
= - 0 ?£ 1 1 9
2
x
y
x
z
-=
?
?
£?
xy
z 1
=
?
?
£? y
x
x
x
y
dz D+D-=
1
2
2.0,1.0
1,2
-=D=D
==
yx
yxdz = 1 2 5.0)2.0(
2
1
1.0
2
1
2
-=-×+×-
3¢ ?à £·
1 £? 1? èá ?? ?¢ 2? £? ?° à2 ?é ?? ì? Dà ?? ?o dz =
x
z
?
?
dx +
y
z
?
?
dy £? £¨ 1 £?
?° à2 ?é ?? ì? Dà ?? ?o dz =
x
z
?
?
xD +
y
z
?
?
yD £? £¨ 2 £?
2e £· ê¨ ±£ Dà ?? ?o £¨ 1 £? oì ′ £? ?? 1° oü è? 1? èá ?± Dà ?? ?o £¨ 2 £?
2 £? 2? ·?
0
0
,
yy
xxdzdz
=
= ·ê
byax
yyxxdz
=D=D
==
,
,
00 Dí ·? °? ±e £? £¨ ?? Dí
byax
yyxxdz
=D=D
==
,
,
00 3á
?3 °? ?? ?2 ′¨ 3á ?y ?3 £?