第五节 隐函数的求导公式 ?o £? ?- 3£ ?? μ? μ? ?· ? ?ú 1ˉ éù ?° ?? ?ó μ? ?? é?
1 £? 0),( =yxF 2 £? 0),,( =zyxF
3 £?
0),,(
0),,(
=
=
zyxG
zyxF
4 £?
0),,,(
0),,,(
=
=
vuyxG
vuyxF
?? ?? ?ú 1ˉ éù ?è ?ó ±í é? 3è ?ó 1ˉ éù £?
?? ?? ?ú 1ˉ éù 1 μ? ?ó 1ˉ éù ía )( xfy = £?
?ú 1ˉ éù 2 μ? ?ó 1ˉ éù ía ),( yxfz = £?
?ú 1ˉ éù 3 μ? ?ó 1ˉ éù ía
)(
)(
xgz
xfy
=
=
£?
?ú 1ˉ éù 4 μ? ?ó 1ˉ éù ía
),(
),(
yxgv
yxfu
=
=
?? )( xfy = ′? ?è 0),( =yxF μ? 0))(,( =xfxF £? μ? é? à? ±? ì? é±? ó x
?ó μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é? ?è ?a 0=+
dx
dy
FF
yx
£? ?ò ′ê
ò? ?ú 1ˉ éù 1 μ? ?ó μ? ?? é?
y
x
F
F
dx
dy
-=
?? ),( yxfz = ′? ?è 0),,( =zyxF μ? 0)),(,,( =yxfyxF £? μ? é? à? ±?
ì? é± ?ó x 1ì y ?ó ?? μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é? ?è ?a
0
0
=+
=+
yzy
xzx
zFF
zFF
£?
?ò ′ê £?
z
y
y
z
x
x
F
F
z
F
F
z -=-=,
??
)(
)(
xgz
xfy
=
=
′? ?è
0),,(
0),,(
=
=
zyxG
zyxF
£? μ?
0))(),(,(
0))(),(,(
=
=
xgxfxG
xgxfxF
£? μ? é? à?
±? ì? é± ?ó x ?ó μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é? ?è ?a
0
0
=++
=++
dx
dz
G
dx
dy
GG
dx
dz
F
dx
dy
FF
zyx
zyx
£? èè
zy
zy
GG
FF
=D £? óò
D
=
D
-
-
=
xz
xz
zx
zx
GG
FF
GG
FF
dx
dy
£?
D
=
D
-
-
=
yx
yx
xy
xy
GG
FF
GG
FF
dx
dz
??
),(
),(
yxgv
yxfu
=
=
′? ?è
0),,,(
0),,,(
=
=
vuyxG
vuyxF
μ?
0)),(),,(,,(
0)),(),,(,,(
=
=
yxgyxfyxG
yxgyxfyxF
£?
μ? é? à? ±? ì? é± ?ó x 1ì y ?ó ?? μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é?
?è ?a £?
0
0
=++
=++
xvxux
xvxux
vGuGG
vFuFF
£?
0
0
=++
=++
yyyuy
yvyuy
vGuGG
vFuFF
£?
?ò ′ê μ? P ?£ 40 ?a 41 μ? ê? ·? ?? é? ?è 2? ±e ?ó 3? yyxx vuvu,,,
?ù 1 £? èè
x
y
yx a r c t a nln
22
=+ £? ?ó
dx
dy
?a £1 èè
x
y
yxyxF a r c t a nln),(
22
-+= £?
22
2
2
22
)(1
)(
yx
yx
x
y
x
y
yx
x
F
x
+
+
=
+
-
-
+
=
22
2
22
)(1
1
yx
xy
x
y
x
yx
y
F
y
+
-
=
+
-
+
= £?
dx
dy
=
yx
yx
F
F
y
x
-
+
=-
?ù 2 £? èè
y
z
z
x
ln= £? ?ó
x
z
?
?
1ì
y
z
?
?
?a £1 èè ),,( zyxF = yz
z
x
lnln +- £?
z
F
x
1
= £?
zz
x
F
y
F
zy
1
,
1
2
--== = )(
2
z
zx +
- £?
x
z
?
?
=
z
x
F
F
- =
zx
z
+
£?
y
z
?
?
=
z
y
F
F
- =
)(
2
zxy
z
+
?ù 3 £? èè ),(),,(),,( yxzzzxyyzyxx === ?? é? òè 2? 3?
0),,( =zyxF
ê? ?2 ?¨ μ? ?? ò? à? ?÷ ?? μ? éù μ? 1ˉ éù £? ?¤?? £1 1-=
?
?
×
?
?
×
?
?
x
z
z
y
y
x
?a £1 yx?? =
x
y
F
F- £?
z
y
?
?
y
z
F
F-= £?
x
z
?
? =
z
x
F
F- £? ?ò ′ê 1-=
?
?×
?
?×
?
?
x
z
z
y
y
x
?ù 4 £? èè ),( vuF ?? ò? à? ?÷ ?? μ? éù £? ?¤ ?? òè 2? 3?
0),( =--F bzcyazcx
ê? ?2 ?¨ μ? 1ˉ éù ),( yxfz = á? 3? a
x
z
?
?
+ c
y
z
b =
?
?
?a 2¨ 1 £1 )(,,2121 F+F-=FF=FF=F bacc zyx
x
z
?
? =
z
x
F
F
- £?
z
y
y
z
F
F
-=
?
?
£? ′? ?è ?a ?¤μ? μ? é? 3ó ±? ?ì ?è ?¤?? ?£
?a 2¨ 2 £1 èè bzcyazcxu -=-=,
?? ?? ),( yxfz = ′? ?è 2? 3? 0),( =--F bzcyazcx
μ? 0)),(),,(( =--F yxbfcyyxafcx £?
μ? é? à? ±? 2? ±e ?ó yx,?ó μ? £? μ?
0)()( =-F+-F
xvxu
bzazc £? 0)()( =-F+-F
yvyu
bzcaz
?ò ′ê £?
vu
u
x
ba
c
z
F+F
F
= £?
vu
v
y
ba
c
z
F+F
F
= £? a
x
z
?
?
+ c
y
z
b =
?
?
解法 1称为公式法,左端函数在对 x求偏导数时,要把 y,z看
成常数,在对 y求偏导数时,要把 x,z看成常数,在对 z求偏导数时,
要把 x,y看成常数;
解法 2是复合函数求导法,等式两边的函数对 x或 y求导时,
要把 z看成 x,y的函数。
?ù 5 £? èè 10222 =++ =++ zyx zyx ?ó dzdydzdx,
?a £1
dz
dx
+
dz
dy
+1 =0 £?
2x
dz
dx
+2 y
dz
dy
+2 z =0,
yx 22
11
=D =2 (y - x )
dz
dx
=
D
-
yz 22
11
=
yx
zy
-
-
,
dz
dy
=
yx
xzzx
-
-
=
D
-
22
11
′ò è? ?ù ?è ?? £? ?ó òú ?ú 1ˉ éù 0),( =yxF 1ì 0),,( =zyxF à? ? ?′ ?ì £?
ò? ?? é? 2¨ ?ó μ? ±? ?? 2? ±? ?£ μ? ?ó òú
0),,(
0),,(
=
=
zyxG
zyxF
1ì
0),,,(
0),,,(
=
=
vuyxG
vuyxF
?a à? ? ?′ ?ì £? òè òú ?? é? ±? ?? ·′ óò £? ê? 1? °′ ·′ 1? 1ˉ éù ?ó μ? μ? ê?
á2 3a oˉ 3è ?ú óa ?o ′í ?? ?ó 2? 3? 3é £? óù ò? ?ú ?3 ?? à? é? ?ó ?a ?a 2? ±?
?o ?? ?£
?ù 6 £? èè
),(
),(
2 yvxugv
yvuxfu
-=
+=
£? ?? ?? gf,?? ò? ?o ?3 à? ?÷ ?? μ? éù £?
?ó
x
u
?
? £?
x
v
?
?
?a £1
x
u
?
?
=
21
)( f
x
v
f
x
u
xu
?
?
+
?
?
+ £?
121
)1( uf
x
v
f
x
u
xf -=
?
?
+
?
?
-
x
v
?
?
=
21
2)1( g
x
v
vyg
x
u
?
?
+-
?
?
£?
121
)12( g
x
v
vyg
x
u
g =
?
?
-+
?
?
12
1
21
21
-¢¢
¢-¢
=D
gvyg
ffx
=
1221
)12)(1( gfgvyfx ¢¢--¢-¢
x
u
?
?
=
D
¢¢--¢¢-
1221
)12( gfgvyfu
£?
x
v
?
?
=
D
-¢+¢¢ )1(
111
fufxg
?ù 7 £? èè ),( txfy = £? ?÷ t é? òè 2? 3? 0),,( =tyxF
ê? ?2 ?¨ μ? yx,μ? 1ˉ éù £? ?? ?? Ff,?? ?? ò? ?o ?3 à? ?÷ ?? μ? éù £?
éó ?¤?? £1
t
F
y
F
t
f
x
F
t
f
t
F
x
f
dx
dy
?
?
+
?
?
?
?
?
?
?
?
-
?
?
?
?
=
?ù 7 £? èè ),( txfy = £? ?÷ t é? òè 2? 3? 0),,( =tyxF
ê? ?2 ?¨ μ? yx,μ? 1ˉ éù £? ?? ?? Ff,?? ?? ò? ?o ?3 à? ?÷ ?? μ? éù £?
éó ?¤?? £1
t
F
y
F
t
f
x
F
t
f
t
F
x
f
dx
dy
?
?
+
?
?
?
?
?
?
?
?
-
?
?
?
?
=
?¤£1 òè ),( txfy = ?è μ?
dx
dy
=
xtx
tff + £? òè 0),,( =tyxF ?è μ?
0=++
xtyx
tF
dx
dy
FF £? óò
x
t =
t
yx
F
dx
dy
FF +
-
dx
dy
= (
tx
ff +
t
yx
F
dx
dy
FF +
- ) =
t
ytxttx
F
dx
dy
FfFfFf --
t
F
y
F
t
f
x
F
t
f
t
F
x
f
dx
dy
?
?
+
?
?
?
?
?
?
?
?
-
?
?
?
?
=
二, 隐函数满足什么条件才存在显函数?
( 三个隐函数存在定理 )
1 £? 0),( =yxF ?ì £¨ ?ú 1ˉ éù ′? óú ?¨ ?í 1 £? £?
èè ),( yxF óú μ? ),(
00
yxP μ? ?3 ?o àú òò ?ú ?? ò? à? ?÷ ?? μ? éù £?
?? 0),(
00
=yxF £? 0),(
00
1yxF
y
£?
óò 2? 3? 0),( =yxF óú μ? ),(
00
yxP μ? ?3 ?o àú òò ?ú
1? ?ü í¨ ?o ?2 ?¨ ?o ·? μ¥ ?μ à? ?÷ ?? ?? ò? à? ?÷ μ? éù μ? 1ˉ éù )( xfy = £?
ê÷ á? 3? ?? ?ú )(
00
xfy =
2 £? 0),,( =zyxF ?ì £¨ ?ú 1ˉ éù ′? óú ?¨ ?í 2 £? £? ?? P ?£ 38 ?a 39
3 £? 0),,,(,0),,,( == vuyxGvuyxF ?ì £¨ ?ú 1ˉ éù ′? óú ?¨ ?í 3 £? £?
?? P ?£ 40
?ù 1 £? Dé ?¤2? 3? 122 =+ yx óú μ? )1,0( μ? ?3 àú òò ?ú ?ü í¨ ?o ?2 ?¨ ?o
·? μ¥ ?μ ?? ?? ò? à? ?÷ μ? éù μ? 1ˉ éù £? ê÷ á? 3? ?? ?ú 1)0( =y
?¤£1 èè
22
),( yxyxF += 1- £?
óò yFxF
yx
2,2 == £? 0)1,0(,0)1,0( 1=
y
FF,
òè ?ú 1ˉ éù ′? óú ?¨ ?í 1 ?è ?a £? 2? 3? 1
22
=+ yx óú μ? )1,0( μ? ?3 àú òò
?ú ?ü í¨ ?o ?2 ?¨ ?o ·? μ¥ ?μ ?? ?? ò? à? ?÷ μ? éù μ? 1ˉ éù )( xfy = ?? á?
3? ?? ?ú 1)0( =y ?£ éá éμ è? £? ·? 1ˉ éù ía
2
1 xy -=
?ù 2 £? èè 1ˉ éù ),(),,( vuyyvuxx == óú μ? ),( vu μ? ?3 ?o àú òò ?ú à? ?÷
?? ò? à? ?÷ ?? μ? éù
vuvu
yyxx,,,£? ò? 0
),(
),(
1
?
?
vu
yx
)
),(
),(
(
vv
uu
yx
yx
vu
yx
=
?
?
£¨ 1 £? ?¤??2 ? 3? 3é
),(
),(
vuyy
vuxx
=
=
óú μ? ),,,( vuyx μ? ?3 àú òò ?ú ?ü í¨? o ?2
?¨ ?o ·? μ¥ ?μ à? ?÷ ?? ?? ò? à? ?÷ ?? μ? éù μ? 2′ 1ˉ éù
),(),,( yxvvyxuu ==
£¨ 2 £? ?ó 2′ 1ˉ éù ),(),,( yxvvyxuu == ?ó yx,μ? ?? μ? éù
?a £1 £¨ 1 £? èè
0),(),,,(
0),(),,,(
=-o
=-o
vuyyvuyxG
vuxxvuyxF
£?
óò ),,,(),,,,( vuyxGvuyxF óú μ? ),,,( vuyx μ? ?3 àú òò ?ú
?? ò? ?ó ·? ·? ±? à? μ? à? ?÷ ?? μ? éù £?
ò? J= 0
),(
),(
),(
),(
1
?
?
=
--
--
==
?
?
vu
yx
yx
yx
GF
GF
vu
GF
vv
uu
vv
uu
?ò ′ê £? òè ?ú 1ˉ éù ′? óú ?¨ ?í 3 ?è ?a £? 2? 3? 3é
0),(),,,(
0),(),,,(
=-o
=-o
vuyyvuyxG
vuxxvuyxF
óú μ? ),,,( vuyx μ? ?3 àú òò ?ú 1? ?ü í¨ ?o ?2 ?¨ ?o 3é μ¥ ?μ à? ?÷ ?? ?? ò?
à? ?÷ ?? μ? éù μ? 2′ 1ˉ éù ),(),,( yxvvyxuu == ?£
£¨ 2 £? ?? ),(),,( yxvvyxuu == ′? ?è
),(
),(
vuyy
vuxx
=
=
μ?
)],(),,([
)],(),,([
yxvyxuyy
yxvyxuxx
o
o
£? à? ±? 2? ±e ?ó x ?ó ?? μ? éù £? μ?
x
v
v
y
x
u
u
y
x
v
v
x
x
u
u
x
?
?
×
?
?
+
?
?
×
?
?
=
?
?
×
?
?
+
?
?
×
?
?
=
0
1
£? ?a ?? £? μ?
u
y
Jx
v
v
y
Jx
u
?
?
-=
?
?
?
?
=
?
? 1
,
1
ì? ?í ?è μ?
u
x
Jy
v
v
x
Jy
u
?
?
=
?
?
?
?
-=
?
? 1
,
1
1 £? 0),( =yxF 2 £? 0),,( =zyxF
3 £?
0),,(
0),,(
=
=
zyxG
zyxF
4 £?
0),,,(
0),,,(
=
=
vuyxG
vuyxF
?? ?? ?ú 1ˉ éù ?è ?ó ±í é? 3è ?ó 1ˉ éù £?
?? ?? ?ú 1ˉ éù 1 μ? ?ó 1ˉ éù ía )( xfy = £?
?ú 1ˉ éù 2 μ? ?ó 1ˉ éù ía ),( yxfz = £?
?ú 1ˉ éù 3 μ? ?ó 1ˉ éù ía
)(
)(
xgz
xfy
=
=
£?
?ú 1ˉ éù 4 μ? ?ó 1ˉ éù ía
),(
),(
yxgv
yxfu
=
=
?? )( xfy = ′? ?è 0),( =yxF μ? 0))(,( =xfxF £? μ? é? à? ±? ì? é±? ó x
?ó μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é? ?è ?a 0=+
dx
dy
FF
yx
£? ?ò ′ê
ò? ?ú 1ˉ éù 1 μ? ?ó μ? ?? é?
y
x
F
F
dx
dy
-=
?? ),( yxfz = ′? ?è 0),,( =zyxF μ? 0)),(,,( =yxfyxF £? μ? é? à? ±?
ì? é± ?ó x 1ì y ?ó ?? μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é? ?è ?a
0
0
=+
=+
yzy
xzx
zFF
zFF
£?
?ò ′ê £?
z
y
y
z
x
x
F
F
z
F
F
z -=-=,
??
)(
)(
xgz
xfy
=
=
′? ?è
0),,(
0),,(
=
=
zyxG
zyxF
£? μ?
0))(),(,(
0))(),(,(
=
=
xgxfxG
xgxfxF
£? μ? é? à?
±? ì? é± ?ó x ?ó μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é? ?è ?a
0
0
=++
=++
dx
dz
G
dx
dy
GG
dx
dz
F
dx
dy
FF
zyx
zyx
£? èè
zy
zy
GG
FF
=D £? óò
D
=
D
-
-
=
xz
xz
zx
zx
GG
FF
GG
FF
dx
dy
£?
D
=
D
-
-
=
yx
yx
xy
xy
GG
FF
GG
FF
dx
dz
??
),(
),(
yxgv
yxfu
=
=
′? ?è
0),,,(
0),,,(
=
=
vuyxG
vuyxF
μ?
0)),(),,(,,(
0)),(),,(,,(
=
=
yxgyxfyxG
yxgyxfyxF
£?
μ? é? à? ±? ì? é± ?ó x 1ì y ?ó ?? μ? £? òè ?′ óa ·′ 1? 1ˉ éù μ? ?ó μ? ?? é?
?è ?a £?
0
0
=++
=++
xvxux
xvxux
vGuGG
vFuFF
£?
0
0
=++
=++
yyyuy
yvyuy
vGuGG
vFuFF
£?
?ò ′ê μ? P ?£ 40 ?a 41 μ? ê? ·? ?? é? ?è 2? ±e ?ó 3? yyxx vuvu,,,
?ù 1 £? èè
x
y
yx a r c t a nln
22
=+ £? ?ó
dx
dy
?a £1 èè
x
y
yxyxF a r c t a nln),(
22
-+= £?
22
2
2
22
)(1
)(
yx
yx
x
y
x
y
yx
x
F
x
+
+
=
+
-
-
+
=
22
2
22
)(1
1
yx
xy
x
y
x
yx
y
F
y
+
-
=
+
-
+
= £?
dx
dy
=
yx
yx
F
F
y
x
-
+
=-
?ù 2 £? èè
y
z
z
x
ln= £? ?ó
x
z
?
?
1ì
y
z
?
?
?a £1 èè ),,( zyxF = yz
z
x
lnln +- £?
z
F
x
1
= £?
zz
x
F
y
F
zy
1
,
1
2
--== = )(
2
z
zx +
- £?
x
z
?
?
=
z
x
F
F
- =
zx
z
+
£?
y
z
?
?
=
z
y
F
F
- =
)(
2
zxy
z
+
?ù 3 £? èè ),(),,(),,( yxzzzxyyzyxx === ?? é? òè 2? 3?
0),,( =zyxF
ê? ?2 ?¨ μ? ?? ò? à? ?÷ ?? μ? éù μ? 1ˉ éù £? ?¤?? £1 1-=
?
?
×
?
?
×
?
?
x
z
z
y
y
x
?a £1 yx?? =
x
y
F
F- £?
z
y
?
?
y
z
F
F-= £?
x
z
?
? =
z
x
F
F- £? ?ò ′ê 1-=
?
?×
?
?×
?
?
x
z
z
y
y
x
?ù 4 £? èè ),( vuF ?? ò? à? ?÷ ?? μ? éù £? ?¤ ?? òè 2? 3?
0),( =--F bzcyazcx
ê? ?2 ?¨ μ? 1ˉ éù ),( yxfz = á? 3? a
x
z
?
?
+ c
y
z
b =
?
?
?a 2¨ 1 £1 )(,,2121 F+F-=FF=FF=F bacc zyx
x
z
?
? =
z
x
F
F
- £?
z
y
y
z
F
F
-=
?
?
£? ′? ?è ?a ?¤μ? μ? é? 3ó ±? ?ì ?è ?¤?? ?£
?a 2¨ 2 £1 èè bzcyazcxu -=-=,
?? ?? ),( yxfz = ′? ?è 2? 3? 0),( =--F bzcyazcx
μ? 0)),(),,(( =--F yxbfcyyxafcx £?
μ? é? à? ±? 2? ±e ?ó yx,?ó μ? £? μ?
0)()( =-F+-F
xvxu
bzazc £? 0)()( =-F+-F
yvyu
bzcaz
?ò ′ê £?
vu
u
x
ba
c
z
F+F
F
= £?
vu
v
y
ba
c
z
F+F
F
= £? a
x
z
?
?
+ c
y
z
b =
?
?
解法 1称为公式法,左端函数在对 x求偏导数时,要把 y,z看
成常数,在对 y求偏导数时,要把 x,z看成常数,在对 z求偏导数时,
要把 x,y看成常数;
解法 2是复合函数求导法,等式两边的函数对 x或 y求导时,
要把 z看成 x,y的函数。
?ù 5 £? èè 10222 =++ =++ zyx zyx ?ó dzdydzdx,
?a £1
dz
dx
+
dz
dy
+1 =0 £?
2x
dz
dx
+2 y
dz
dy
+2 z =0,
yx 22
11
=D =2 (y - x )
dz
dx
=
D
-
yz 22
11
=
yx
zy
-
-
,
dz
dy
=
yx
xzzx
-
-
=
D
-
22
11
′ò è? ?ù ?è ?? £? ?ó òú ?ú 1ˉ éù 0),( =yxF 1ì 0),,( =zyxF à? ? ?′ ?ì £?
ò? ?? é? 2¨ ?ó μ? ±? ?? 2? ±? ?£ μ? ?ó òú
0),,(
0),,(
=
=
zyxG
zyxF
1ì
0),,,(
0),,,(
=
=
vuyxG
vuyxF
?a à? ? ?′ ?ì £? òè òú ?? é? ±? ?? ·′ óò £? ê? 1? °′ ·′ 1? 1ˉ éù ?ó μ? μ? ê?
á2 3a oˉ 3è ?ú óa ?o ′í ?? ?ó 2? 3? 3é £? óù ò? ?ú ?3 ?? à? é? ?ó ?a ?a 2? ±?
?o ?? ?£
?ù 6 £? èè
),(
),(
2 yvxugv
yvuxfu
-=
+=
£? ?? ?? gf,?? ò? ?o ?3 à? ?÷ ?? μ? éù £?
?ó
x
u
?
? £?
x
v
?
?
?a £1
x
u
?
?
=
21
)( f
x
v
f
x
u
xu
?
?
+
?
?
+ £?
121
)1( uf
x
v
f
x
u
xf -=
?
?
+
?
?
-
x
v
?
?
=
21
2)1( g
x
v
vyg
x
u
?
?
+-
?
?
£?
121
)12( g
x
v
vyg
x
u
g =
?
?
-+
?
?
12
1
21
21
-¢¢
¢-¢
=D
gvyg
ffx
=
1221
)12)(1( gfgvyfx ¢¢--¢-¢
x
u
?
?
=
D
¢¢--¢¢-
1221
)12( gfgvyfu
£?
x
v
?
?
=
D
-¢+¢¢ )1(
111
fufxg
?ù 7 £? èè ),( txfy = £? ?÷ t é? òè 2? 3? 0),,( =tyxF
ê? ?2 ?¨ μ? yx,μ? 1ˉ éù £? ?? ?? Ff,?? ?? ò? ?o ?3 à? ?÷ ?? μ? éù £?
éó ?¤?? £1
t
F
y
F
t
f
x
F
t
f
t
F
x
f
dx
dy
?
?
+
?
?
?
?
?
?
?
?
-
?
?
?
?
=
?ù 7 £? èè ),( txfy = £? ?÷ t é? òè 2? 3? 0),,( =tyxF
ê? ?2 ?¨ μ? yx,μ? 1ˉ éù £? ?? ?? Ff,?? ?? ò? ?o ?3 à? ?÷ ?? μ? éù £?
éó ?¤?? £1
t
F
y
F
t
f
x
F
t
f
t
F
x
f
dx
dy
?
?
+
?
?
?
?
?
?
?
?
-
?
?
?
?
=
?¤£1 òè ),( txfy = ?è μ?
dx
dy
=
xtx
tff + £? òè 0),,( =tyxF ?è μ?
0=++
xtyx
tF
dx
dy
FF £? óò
x
t =
t
yx
F
dx
dy
FF +
-
dx
dy
= (
tx
ff +
t
yx
F
dx
dy
FF +
- ) =
t
ytxttx
F
dx
dy
FfFfFf --
t
F
y
F
t
f
x
F
t
f
t
F
x
f
dx
dy
?
?
+
?
?
?
?
?
?
?
?
-
?
?
?
?
=
二, 隐函数满足什么条件才存在显函数?
( 三个隐函数存在定理 )
1 £? 0),( =yxF ?ì £¨ ?ú 1ˉ éù ′? óú ?¨ ?í 1 £? £?
èè ),( yxF óú μ? ),(
00
yxP μ? ?3 ?o àú òò ?ú ?? ò? à? ?÷ ?? μ? éù £?
?? 0),(
00
=yxF £? 0),(
00
1yxF
y
£?
óò 2? 3? 0),( =yxF óú μ? ),(
00
yxP μ? ?3 ?o àú òò ?ú
1? ?ü í¨ ?o ?2 ?¨ ?o ·? μ¥ ?μ à? ?÷ ?? ?? ò? à? ?÷ μ? éù μ? 1ˉ éù )( xfy = £?
ê÷ á? 3? ?? ?ú )(
00
xfy =
2 £? 0),,( =zyxF ?ì £¨ ?ú 1ˉ éù ′? óú ?¨ ?í 2 £? £? ?? P ?£ 38 ?a 39
3 £? 0),,,(,0),,,( == vuyxGvuyxF ?ì £¨ ?ú 1ˉ éù ′? óú ?¨ ?í 3 £? £?
?? P ?£ 40
?ù 1 £? Dé ?¤2? 3? 122 =+ yx óú μ? )1,0( μ? ?3 àú òò ?ú ?ü í¨ ?o ?2 ?¨ ?o
·? μ¥ ?μ ?? ?? ò? à? ?÷ μ? éù μ? 1ˉ éù £? ê÷ á? 3? ?? ?ú 1)0( =y
?¤£1 èè
22
),( yxyxF += 1- £?
óò yFxF
yx
2,2 == £? 0)1,0(,0)1,0( 1=
y
FF,
òè ?ú 1ˉ éù ′? óú ?¨ ?í 1 ?è ?a £? 2? 3? 1
22
=+ yx óú μ? )1,0( μ? ?3 àú òò
?ú ?ü í¨ ?o ?2 ?¨ ?o ·? μ¥ ?μ ?? ?? ò? à? ?÷ μ? éù μ? 1ˉ éù )( xfy = ?? á?
3? ?? ?ú 1)0( =y ?£ éá éμ è? £? ·? 1ˉ éù ía
2
1 xy -=
?ù 2 £? èè 1ˉ éù ),(),,( vuyyvuxx == óú μ? ),( vu μ? ?3 ?o àú òò ?ú à? ?÷
?? ò? à? ?÷ ?? μ? éù
vuvu
yyxx,,,£? ò? 0
),(
),(
1
?
?
vu
yx
)
),(
),(
(
vv
uu
yx
yx
vu
yx
=
?
?
£¨ 1 £? ?¤??2 ? 3? 3é
),(
),(
vuyy
vuxx
=
=
óú μ? ),,,( vuyx μ? ?3 àú òò ?ú ?ü í¨? o ?2
?¨ ?o ·? μ¥ ?μ à? ?÷ ?? ?? ò? à? ?÷ ?? μ? éù μ? 2′ 1ˉ éù
),(),,( yxvvyxuu ==
£¨ 2 £? ?ó 2′ 1ˉ éù ),(),,( yxvvyxuu == ?ó yx,μ? ?? μ? éù
?a £1 £¨ 1 £? èè
0),(),,,(
0),(),,,(
=-o
=-o
vuyyvuyxG
vuxxvuyxF
£?
óò ),,,(),,,,( vuyxGvuyxF óú μ? ),,,( vuyx μ? ?3 àú òò ?ú
?? ò? ?ó ·? ·? ±? à? μ? à? ?÷ ?? μ? éù £?
ò? J= 0
),(
),(
),(
),(
1
?
?
=
--
--
==
?
?
vu
yx
yx
yx
GF
GF
vu
GF
vv
uu
vv
uu
?ò ′ê £? òè ?ú 1ˉ éù ′? óú ?¨ ?í 3 ?è ?a £? 2? 3? 3é
0),(),,,(
0),(),,,(
=-o
=-o
vuyyvuyxG
vuxxvuyxF
óú μ? ),,,( vuyx μ? ?3 àú òò ?ú 1? ?ü í¨ ?o ?2 ?¨ ?o 3é μ¥ ?μ à? ?÷ ?? ?? ò?
à? ?÷ ?? μ? éù μ? 2′ 1ˉ éù ),(),,( yxvvyxuu == ?£
£¨ 2 £? ?? ),(),,( yxvvyxuu == ′? ?è
),(
),(
vuyy
vuxx
=
=
μ?
)],(),,([
)],(),,([
yxvyxuyy
yxvyxuxx
o
o
£? à? ±? 2? ±e ?ó x ?ó ?? μ? éù £? μ?
x
v
v
y
x
u
u
y
x
v
v
x
x
u
u
x
?
?
×
?
?
+
?
?
×
?
?
=
?
?
×
?
?
+
?
?
×
?
?
=
0
1
£? ?a ?? £? μ?
u
y
Jx
v
v
y
Jx
u
?
?
-=
?
?
?
?
=
?
? 1
,
1
ì? ?í ?è μ?
u
x
Jy
v
v
x
Jy
u
?
?
=
?
?
?
?
-=
?
? 1
,
1