思路 ①设 则由展系数公式有 则得证,但目前 积分式不知 §2 Bessel函数的性质 一、母函数关系式 1(-) 2 - ()xt nt n n eJxt∞ =∞ = ∑ (*) 1(-) 2 - ()xt nt n n eCxt∞ =∞ = ∑ 1(-) 2 1 1 () 2 xt t nnl eCdtJx i tp +==∫? 若 ()nJx ②用指数函数的展开式 和绝对收敛级数可逐项相乘的性质证 0 ,! k z k zez k ∞ = <∞∑ 2 0 1 , !22 lx t l xxettt∞ = ???? <∞<∞∑ ?? ?????? 即 -2 0 1 --0 !22 mx t m xxet mtt ∞ = ???? <∞>∑ ?? ?????? ( )1-2 - -22 0000 11(-1)- !2!2!!2 xt t lmlmmxx t lmt lmlm xtxxee mtlm +∞∞∞∞ ==== ??????=? ?=∑∑∑∑?????? ?????? 证明:∵ ∴ 令 -lmn= ,则lmn=+ 于是 00--lmnnmn ∞∞∞∞ =+===∞ →→→∑∑∑∑ ∴()1-2 -0- (-1) 2() ()!!2 xt t m mnnn nnmn xetJxt mnn ∞∞∞+ =∞ =∞ ==∑∑∑ (**) 问:① ()1- sin2 (1)11 11() 22 xt ix t in i n tn eeJxd ied iiet q q qq pp+=+==∫∫??l ∴ (sin-)1() 2 ixnnJxedp qqp qp=∫- 或 0 1()cos(sin-) nJxxnd p qqq p=∫ 问:② 的微分式?()nJx 答:无,∵ 展系无微分式 问:③ 有母函关系吗? 答:无 ()()Jxnn n ≠ L 二、递推公式 1. -1 -- 1 ()()(1) ()-()(2) dxJxxJx dx d xJxxJx dx nn nn + ???= ??? ? ???=?? ? 思路: ①用母函关系证: 答:No!∵只适于 ②用积分式证? No!∵它来源于母函,. ③用级数表示证? n= nn= [分析]:欲证(2),即要证 左边 [证明]: 21 - 0 (-1)- !(2)2 kk k xx kk n n n ++∞ = ??= ∑ ?? Γ++ ?? - ()d xJx dx n n???? 2 0 (-1)() !(1)2 kk k xJx kk n n n +∞ = ??=∑ ?? Γ++ ??∵ 2 2 0 (-1)1 !(1)2 kk k k d x dxkk n n +∞ = ??= ∑ ?? Γ++ ?? 2 2-1 1 (-1)21 !(1)2 kk k k k x kk n n +∞ = ???=∑ ?? Γ++ ?? 2-1 - 0 (-1) (-1)!(1)2 kk k x x kk n n n +∞ = ??=?∑ ?? Γ++ ?? 令k-1=l 211 - 0 (-1) !(2)2 ll l x x ll n n n +++∞ = ??=?∑ ?? Γ++ ?? - 1()xJx n n += 应用: ①为派生出其他递推公式 由(1)→ 1-1 -1()()()(1)xJxxJxxJxnnnn ′+= -1()()()vxJxJxxJxnnn′+= (3) 由(2)→ -1--1-1()-()-()(2)xJxxJxxJxnnnn +′= -1 1(2): xn′ ? 1()-()-()(4)vxJxJxxJxnnn + ′ = (3)+(4): -112()()-()(5)vJxJxJxnn+′= (3)-(4): -112()()()(6)JxJxJxx nnnn +=+ ②只要查 和 表可计算出任一0()Jx 1 ()Jx ()Jxn g 1 1(1): vx ? ′ ? 由(3):知 -1 ()Jxn 和 ()()vJxJxn ′???→可算出 知,由 0 1 1 () () () Jx Jx Jx ? ′→? ? 由(4):知 ()Jxn 和 1()()JxJxnn+′???→可算出 如,由 1 2 1 () () () Jx Jx Jx ?→? ′ ? 仿此继续下去→ ()Jxn 注:当 时亦可用母函数法推得上述递推公式nn = ③用来计算 含的积分: [ ] 3 00 (1)22 0100 32 1010 32 110 (1) 32 120 32 12 () ()() ()-() ()-2() ()-2 1 () ()-2( : ) a aa a a a xJxdx dxxJxdxxxJxdx dx xJxxJxdx aJaxJxdx daJaxJxdx dx aJaa e a g J ∫ ==∫∫ =∫ =∫ ??= ∫?? = ()Jxn (2)00 110 00 :()()-() -()-() 2 dJxdxxJxd xJxdxdx JxdxJxC eg ????≤==∫∫∫???? ?? ′==+∫ (7) 33:()?egJxdx =∫ 由(5):132()-()2()JxJxJx′= ∴ 3()Jxdx∫ 12()-2()JxdxJxdx′=∫∫ 02-()-2()JxdxJxC′=+∫ 02-()-2()JxJxC 三、正交归一 n阶的Bessel函数系 ( ){ } ( ),1,2,,0nnnmmJxmLJnxar ??==?? 具有加权 的正交性r 2 2 10 ()()()2 a nnn nmnlnlml aJkJkdJkarrrrd +=∫ (7) 其中, 1,2,...,()0nnmmJka== ∵ 222(-)0RRknRrrr′′′++= 即 2 22-0ddRnkR ddrrr ????+= ???????? ∴ () 2 2() ()-0 n nnnm mnm dJkdnkJk dd r rr rrr ????+= ???????? (8) ( ) ( ) ( )22--0nnl nn lnl dJk kJk dd rrrr rr ???? ??+=?? ???? (9) () () 0 (8)-(9)a nnnlnmJkJkdrrr??∫ ( ) ( ) ( ) ( )00-nbnlmaannnmnldJkdJnkddJkdJkdd ddrrrrrrrr????????= ∫∫ ???? ( ) ( ) ( )0 0()|- nnn nlmananl nm dJkdJnkdJkJkd dd rrrrrrr rr= ∫ ()( ) ( ) ( )0 0-|nnnnmnmnlananl dJkdJkdJkJ ddrrrrrrrrr+∫ () ()( ) 0 ()- an n nm nnnl nmnl dJkdJkJkJk dd rrrrr rr ?? ??= ?? 0= (10) ∵ ( ) 0,1,2,...,,...nnmJkaml== ∴①若 ,即 ,则ml≠ nnmlkk≠ ( ) ( )0 0a nnnmnlJkJkdrrr=∫ ②若 ,则 ,故:ml= 0 00a Ld r =∫ 令 (视m为变数取极限)ml→ 此时 ,而( ) 0nnlJka = ( ) 0nnmJka ≠ 于是(10)→ ( ) ( ) ( ) ( )10 22lim - ml nnn nmnlla nn nmnl Rk ml aJkaJkakJkJkd kkrrr→ ?= ∫ ( ) ( )2lim 2ml nn lnmnl kk m akJkaJka k→ ′′= ()2 22 nnlaJka??′= ?? 由(4):取 ( ) ( ) ( ) ( ) ( )1 - - bnnn llnlnl nn lnl xkakaJkanJka kaJka+ ′= = ( )2 212 nnlaJka+= 四、广义付氏展开 若 在 上有连续的一阶导,分段连续的 二阶导,且 有界,则 ()f r (0,)a 0()f rr =→ ( ) 1 () nmnm m fCJkrr∞ = = ∑ (一致性) 其中, ( ) ( )02 2 1 1 () 2 a n nmn nm CfJkda Jka rrrr + = ∫ 五、例题 P359例2 0 0 0(1)0 0(2) 0(3) (4) a z zh ua u u uu r r = = = ?=≤≤? ? = ?? =? ? =? 解:1. 令 (,)()()uzRZzrr= 则(1)→ 222 0(5) (--0)0(6) ZZ RRkR m rrr ′′ +=? ?′′′++=? (2)→ ()0Ra = (7) (3)→ (0)0Z = (8) 2.解本征值问题 (6)(7) ?? ?? ? 得: ( ) 20 200 0--,()() m mmm xkRJk a rr ??=== ???? 3.解(5): ( )20-0mZkz′′ = 00- mmkzkz mmmZAeBe=+ 代入(8): 0,-mmmmABBA+== ∴ 00- 0()(-)() mmkzkz mmZzAmeeCshkz 4.迭加: ( ) ( )000 1mmmm uCshkzJkr∞ = = ∑ 由(4): ( ) ( )0000 1 mmmm CshkhJkur∞ = =∑ ∴ ( ) ( ) ( )00002 200 1 1 2 a mm mm CuJkda Jkashk rrr r = ∫ 令 则当 时,0 ,mkxr = :0 ar → 0:0 mxka→ ∴ ( ) ( ) ( ) ( ) [ ] ( ) 0 0 0 00 (1) 1020 1 () 2 1 () m m kaa m m ka m JkdxJxdx k d xJxdx dxk rrr=∫∫ =∫ ()()()() 000 120 1 mmm mm akaJkaJka kk== 问: ( )01 0mJka = No!只有 ( )( ) 1 1 0 0 0 0 m m Jka Jka ? =? ? = ?? 代入 得:mC ( ) ( ) ( )0001 2 m n mmm uC kashkhJka= ∴ ()()()() 00 00 001 1 2mm mmmm shkzJkuu xshkhJka r∞ = =∑ 复习上次课: 222(-)0xyxyxyn′′′++= (*) → ( ) 1(-) 2 - 1 2 2 10 021 :() :()() () :()()()2 1(),()() xt n nn a nmnlnlml an mnmmnmm m eJxt d xJxxJx dxyJx aJkJkdJka fCJkCfJkN nn nu u rrrrd rrrr ∞ =∞ ±± ± + ∞ = ? ? =∑ ??=±? ?? =? ? =∫ ? ==∑ ∫ ? m 1.母函 2.推 3.正交 4.展: 当 ,nn ≠ -()()yCJxdJxn nn=+通 当 为此引入另两类柱函数 -,()(-1)(),? n nnnJxJxyn===通