思路
①设 则由展系数公式有
则得证,但目前 积分式不知
§2 Bessel函数的性质
一、母函数关系式
1(-)
2
-
()xt nt n
n
eJxt∞
=∞
= ∑ (*)
1(-)
2
-
()xt nt n
n
eCxt∞
=∞
= ∑
1(-)
2
1
1 ()
2
xt
t
nnl
eCdtJx
i tp +==∫?
若
()nJx
②用指数函数的展开式
和绝对收敛级数可逐项相乘的性质证
0
,!
k
z
k
zez
k
∞
=
<∞∑
2
0
1 ,
!22
lx
t
l
xxettt∞
=
???? <∞<∞∑ ??
?????? 即
-2
0
1 --0
!22
mx
t
m
xxet
mtt
∞
=
???? <∞>∑ ??
??????
( )1-2 - -22
0000
11(-1)-
!2!2!!2
xt
t
lmlmmxx
t lmt
lmlm
xtxxee
mtlm
+∞∞∞∞
====
??????=? ?=∑∑∑∑??????
??????
证明:∵
∴
令 -lmn= ,则lmn=+
于是
00--lmnnmn
∞∞∞∞
=+===∞
→→→∑∑∑∑
∴()1-2
-0-
(-1) 2()
()!!2
xt
t
m
mnnn
nnmn
xetJxt
mnn
∞∞∞+
=∞ =∞
==∑∑∑
(**)
问:①
()1- sin2
(1)11
11()
22
xt ix
t
in
i
n tn
eeJxd ied
iiet
q
q
qq
pp+=+==∫∫??l
∴ (sin-)1() 2 ixnnJxedp qqp qp=∫- 或
0
1()cos(sin-)
nJxxnd
p qqq
p=∫
问:② 的微分式?()nJx
答:无,∵ 展系无微分式
问:③ 有母函关系吗?
答:无
()()Jxnn n ≠
L
二、递推公式
1.
-1
--
1
()()(1)
()-()(2)
dxJxxJx
dx
d xJxxJx
dx
nn
nn
+
???=
???
?
???=??
?
思路:
①用母函关系证:
答:No!∵只适于
②用积分式证?
No!∵它来源于母函,.
③用级数表示证?
n=
nn=
[分析]:欲证(2),即要证
左边
[证明]:
21
-
0
(-1)-
!(2)2
kk
k
xx
kk
n
n
n
++∞
=
??= ∑ ??
Γ++ ??
- ()d xJx
dx
n
n????
2
0
(-1)()
!(1)2
kk
k
xJx
kk
n
n n
+∞
=
??=∑ ??
Γ++ ??∵
2
2
0
(-1)1
!(1)2
kk
k
k
d x
dxkk
n
n
+∞
=
??= ∑ ??
Γ++ ??
2
2-1
1
(-1)21
!(1)2
kk
k
k
k x
kk
n
n
+∞
=
???=∑ ??
Γ++ ??
2-1
-
0
(-1)
(-1)!(1)2
kk
k
x x
kk
n
n
n
+∞
=
??=?∑ ??
Γ++ ??
令k-1=l
211
-
0
(-1)
!(2)2
ll
l
x x
ll
n
n
n
+++∞
=
??=?∑ ??
Γ++ ??
-
1()xJx
n
n +=
应用:
①为派生出其他递推公式
由(1)→ 1-1 -1()()()(1)xJxxJxxJxnnnn ′+=
-1()()()vxJxJxxJxnnn′+= (3)
由(2)→ -1--1-1()-()-()(2)xJxxJxxJxnnnn +′=
-1
1(2):
xn′ ? 1()-()-()(4)vxJxJxxJxnnn +
′ =
(3)+(4): -112()()-()(5)vJxJxJxnn+′=
(3)-(4): -112()()()(6)JxJxJxx nnnn +=+
②只要查 和 表可计算出任一0()Jx 1 ()Jx ()Jxn
g 1
1(1):
vx ?
′ ?
由(3):知 -1 ()Jxn 和 ()()vJxJxn ′???→可算出
知,由 0
1
1
() ()
()
Jx Jx
Jx
? ′→?
?
由(4):知 ()Jxn 和 1()()JxJxnn+′???→可算出
如,由 1
2
1
() ()
()
Jx Jx
Jx
?→?
′ ?
仿此继续下去→ ()Jxn
注:当 时亦可用母函数法推得上述递推公式nn =
③用来计算 含的积分:
[ ]
3
00
(1)22
0100
32
1010
32
110
(1) 32
120
32
12
()
()()
()-()
()-2()
()-2
1
()
()-2(
:
)
a
aa
a
a
a
xJxdx
dxxJxdxxxJxdx
dx
xJxxJxdx
aJaxJxdx
daJaxJxdx
dx
aJaa
e
a
g
J
∫
==∫∫
=∫
=∫
??= ∫??
=
()Jxn
(2)00
110
00
:()()-()
-()-()
2 dJxdxxJxd xJxdxdx
JxdxJxC
eg ????≤==∫∫∫????
??
′==+∫ (7)
33:()?egJxdx =∫
由(5):132()-()2()JxJxJx′=
∴ 3()Jxdx∫
12()-2()JxdxJxdx′=∫∫
02-()-2()JxdxJxC′=+∫
02-()-2()JxJxC
三、正交归一
n阶的Bessel函数系
( ){ } ( ),1,2,,0nnnmmJxmLJnxar ??==??
具有加权 的正交性r
2
2
10 ()()()2
a nnn
nmnlnlml
aJkJkdJkarrrrd
+=∫ (7)
其中, 1,2,...,()0nnmmJka==
∵ 222(-)0RRknRrrr′′′++=
即
2
22-0ddRnkR
ddrrr
????+=
????????
∴ ()
2
2() ()-0
n
nnnm
mnm
dJkdnkJk
dd
r rr
rrr
????+=
???????? (8)
( ) ( ) ( )22--0nnl nn
lnl
dJk kJk
dd
rrrr
rr
????
??+=??
????
(9)
() ()
0
(8)-(9)a nnnlnmJkJkdrrr??∫
( ) ( ) ( ) ( )00-nbnlmaannnmnldJkdJnkddJkdJkdd ddrrrrrrrr????????= ∫∫
????
( ) ( ) ( )0 0()|-
nnn
nlmananl
nm
dJkdJnkdJkJkd
dd
rrrrrrr
rr= ∫
()( ) ( ) ( )0 0-|nnnnmnmnlananl dJkdJkdJkJ ddrrrrrrrrr+∫
() ()( )
0
()-
an
n nm
nnnl
nmnl
dJkdJkJkJk
dd
rrrrr
rr
??
??=
??
0= (10)
∵ ( ) 0,1,2,...,,...nnmJkaml==
∴①若 ,即 ,则ml≠ nnmlkk≠
( ) ( )0 0a nnnmnlJkJkdrrr=∫
②若 ,则 ,故:ml= 0 00a Ld r =∫
令 (视m为变数取极限)ml→
此时 ,而( ) 0nnlJka = ( ) 0nnmJka ≠
于是(10)→
( ) ( ) ( ) ( )10 22lim -
ml
nnn
nmnlla nn
nmnl Rk
ml
aJkaJkakJkJkd
kkrrr→
?=
∫
( ) ( )2lim
2ml
nn
lnmnl
kk m
akJkaJka
k→
′′=
()2 22 nnlaJka??′= ??
由(4):取
( ) ( ) ( )
( ) ( )1
-
-
bnnn
llnlnl
nn
lnl
xkakaJkanJka
kaJka+
′=
=
( )2 212 nnlaJka+=
四、广义付氏展开
若 在 上有连续的一阶导,分段连续的
二阶导,且 有界,则
()f r (0,)a
0()f rr =→
( )
1
() nmnm
m
fCJkrr∞
=
= ∑ (一致性)
其中, ( ) ( )02
2
1
1 ()
2
a n
nmn
nm
CfJkda
Jka
rrrr
+
= ∫
五、例题
P359例2
0
0
0(1)0
0(2)
0(3)
(4)
a
z
zh
ua
u
u
uu
r
r
=
=
=
?=≤≤?
? =
??
=?
? =?
解:1. 令 (,)()()uzRZzrr=
则(1)→ 222
0(5)
(--0)0(6)
ZZ
RRkR
m
rrr
′′ +=?
?′′′++=?
(2)→ ()0Ra = (7)
(3)→ (0)0Z = (8)
2.解本征值问题 (6)(7)
??
??
?
得:
( )
20
200
0--,()()
m
mmm
xkRJk
a rr
??===
????
3.解(5): ( )20-0mZkz′′ =
00-
mmkzkz
mmmZAeBe=+
代入(8): 0,-mmmmABBA+==
∴
00- 0()(-)()
mmkzkz
mmZzAmeeCshkz
4.迭加: ( ) ( )000
1mmmm
uCshkzJkr∞
=
= ∑
由(4): ( ) ( )0000
1 mmmm
CshkhJkur∞
=
=∑
∴ ( ) ( ) ( )00002
200
1
1
2
a
mm
mm
CuJkda
Jkashk
rrr
r
= ∫
令 则当 时,0 ,mkxr = :0 ar → 0:0 mxka→
∴ ( ) ( ) ( )
( ) [ ]
( )
0
0
0
00
(1)
1020
1 ()
2
1 ()
m
m
kaa
m
m
ka
m
JkdxJxdx
k
d xJxdx
dxk
rrr=∫∫
=∫
()()()()
000
120
1
mmm
mm
akaJkaJka
kk==
问: ( )01 0mJka =
No!只有 ( )( )
1
1
0
0
0
0
m
m
Jka
Jka
? =?
? =
??
代入 得:mC
( ) ( ) ( )0001
2
m n
mmm
uC
kashkhJka=
∴ ()()()()
00
00
001
1
2mm
mmmm
shkzJkuu
xshkhJka
r∞
=
=∑
复习上次课:
222(-)0xyxyxyn′′′++= (*)
→
( )
1(-)
2
-
1
2
2
10
021
:()
:()()
()
:()()()2
1(),()()
xt
n
nn
a
nmnlnlml
an
mnmmnmm
m
eJxt
d xJxxJx
dxyJx
aJkJkdJka
fCJkCfJkN
nn
nu
u
rrrrd
rrrr
∞
=∞
±±
±
+
∞
=
?
? =∑
??=±? ??
=?
? =∫
?
==∑ ∫
?
m
1.母函
2.推
3.正交
4.展:
当 ,nn ≠ -()()yCJxdJxn nn=+通
当
为此引入另两类柱函数
-,()(-1)(),?
n
nnnJxJxyn===通