1
一、矩阵位移法的基本思路矩阵位移法的两个基本步骤是
( 1)结构的离散化;( 2)单元分析;( 3)整体分析,
任务 意义单元分析建立杆端力与杆端位移间的刚度方程,形成单元刚度矩阵用矩阵形式表示杆件的转角位移方程整体分析由变形条件和平衡条件建立结点力与结点位移间的刚度方程,形成整体刚度矩阵用矩阵形式表示位移法基本方程
2
指杆件除有弯曲变形外,还有轴向变形和剪切变形的单元,
杆件两端各有三个位移分量,
符号规则,图 (a)表示单元编号、杆端编号和局部座标,局部座标的 x
座标与杆轴重合;
1 2
e
E A I
l
x
y
(a)
图 (b)表示的杆端位移均为正方向。
单元编号杆端编号局部座标
1 2
1u
1v
1? 2?
2u
2v
(b) 杆端位移编号
1 2
1X
1Y
1M 2M
2X
2Y
杆端力编号(c)
二、杆端位移、杆端力的正负号规定一般单元:
3
kF
e e e局部座标系中的单元刚度方程
EA
l
6EI
l2
6EI
l2
EA
l
12EI
l3
12EI
l3
4EI
l
2EI
l
e
k
e =
(1)
(2)
(3)
(4)
(5)
(6)
(1) (2) (3) (4) (5) (6)
0 0 0 0
0 0 6EIl2
0 6EIl2 0
-EA
l
-6EI
l2
-6EI
l2
EA
l
-12EI
l3
12EI
l3
2EI
l
4EI
l
0 0 0 0
0 0 -6EIl2
0 6EIl2 0
11?u 11?v 11 12?u 12?v 12
只与杆件本身性质有关而与外荷载无关局部座标系的单元刚度矩阵
4
§ 13-3 单元刚度矩阵 (整体座标系 )
x
y
e
1X
1Y
1M
2X2Y
x
y
X1
Y1
1M
X2
Y2
2M
2
2
2
1
1
1
2
2
2
1
1
1
100000
0c o ss i n000
0s i nc o s000
000100
0000c o ss i n
0000s i nc o s
M
Y
X
M
Y
X
M
Y
X
M
Y
X

eee
FTF?
e e
座标转换矩阵一、单元座标转换矩阵 正交矩阵
[T]-1 =[T]T
FTF T?
e e
T
e e
TT

5
三、单元刚度矩阵的性质
( 1)单元刚度系数的意义
ijk
e — 代表单元杆端第 j个位移分量等于 1时所引起的第 i个杆端力分量。
( 2)单元刚度矩阵 是对称矩阵,
k
e 即
jiij kk?

( 3)一般单元的刚度矩阵 是奇异矩阵;
k
e 因此它的逆矩阵不存在从力学上的理解是,根据单元刚度方程
kF
e e e
F
e e由 有一组力的解答 (唯一的 ),即正问题。
F
e e由 如果
F
e 不是一组平衡力系则无解;若是一组平衡力系,则解答不是唯一的,即反问题。
[k] = [T]T k e[T]e
二、整体座标系中的单元刚度矩阵
6
§ 13-4 连续梁的整体刚度矩阵按传统的位移法
i1 i21 2
1
4i1?1 2i1?1 0
i1 i21 2
2
2i1?2 2i2?2(4i1+4i2)?2
i1 i21 2
3
0 2i2?3 4i2?3
每个结点位移对 {F}的单独贡献
F1
F2
F3
4i1 2i1 0
2i1 4i1+4i2
2i20
2i2
4i2
1
2
3
=
{F}=[K]{?}
根据每个结点位移对附加约束上的约束力 {F}的贡献大小进行叠加而计算所得。
传统位移法
7
一,单元集成法的力学模型和基本概念分别考虑每个单元对 {F}的单独贡献,整体刚度矩阵由单元直接集成
i1 i21 2
1?2?3
F3{F}1 = [ F11 F21 1 ]T
F11 F21 F31
令 i2 =0,则 F31 =0
[k] = 4i12i
1 4i1
2i11 F11
F21 =
4i1
2i1 4i1
2i1?1
2
( a)
( b)
F11
F21
F31
=
4i1
2i1 4i1
2i1 0
0
0 0 0
1
2
3
1 [K] {?}{F} = 1
[K] =1
4i1
2i1 4i1
2i1 0
0
0 0 0
单元 1 的贡献矩阵单元 1 对结点力 {F}的贡献略去其它单元的贡献。
8
i1 i21 2
1?2?3
F12 F22 F32
[k] = 4i22i
2 4i2
2i22
F12
F22
F32
= 4i1
2i1 4i1
2i1
0
0
0
0 0?1
2
3
2 [K] {?}{F} = 2
设 i1 =0,则 F12 =0
[K] =2 4i1
2i1 4i1
2i1
0
0
0
0 0
单元?的贡献矩阵
F3{F}2 = [ F12 F22 2 ]T
单元?对结点力 {F}的贡献略去单元?的贡献。
9
1 [K] {?}{F} = 1
[K] =1
4i1
2i1 4i1
2i1 0
0
0 0 0
2 [K] {?}{F} = 2
[K] =2 4i1
2i1 4i1
2i1
0
0
0
0 0
i1 i21 2
1 2 1 2
[K]=( [K] +[K] ) =1 2
][Ke
e
[k] [K] [K] e e
{F}={F} +{F} =( [K] +[K] ) {?}
1 2
{F}=[K]{?}
整体刚度矩阵为:
单元集成法求整体刚度矩阵步骤:
根据单元?和单元?分别对结点力 {F}的贡献,可得整体刚度方程:
10
[k] [K] [K] e e1 2
[k] = 4i12i
1 4i1
2i11 [K] =1 4i12i
1 4i1
2i1 0
0
0 0 0
[k] = 4i22i
2 4i2
2i22 [K] =2 4i
2
2i2 4i2
2i2
0
0
0
0 0
1
2
1
4i1
2i1 4i1
2i1 0
0
0 0 0
2i2
2i2 4i2
[K]=
4i1
2i1 4(i1+i2)
2i1 0
2i2
0 2i2 4i2
4i1+4i2
整体刚度矩阵,
11
二、按照单元定位向量由 [k] 求e [K]e
(1)在整体分析中按结构的结点位移统一编码,称为总码。
(2)在单元分析中按单元两端结点位移单独编码,称为局部码。
以连续梁为例 1 2
1 2 3
1(1) (2) 2(1) (2)
位移统一编码,总码单元
1
2
对应关系局部码?总码 单元定位向量
e
(1)?1
(2)?2
1
=

2
1
(1)?2
(2)?3
2
=

3
2
确定 中的元素在 中的位置。为此建立两种编码:[k]
e [K] e
位移单独编码局部码由单元的结点位移总码组成的向量
12
( 3)单刚 [k]
e [K]e和单元贡献 中元素的对应关系单元?
单元?
[k] = 4i12i
1 4i1
2i11 (1)
(2)
(1) (2)

1
=

2
1 [K] =
1
1
2
3
0
0
0 0 0
0 0
0 0
4i1 2i1
2i1 4i1
1 2 3
[k] = 4i22i
2 4i2
2i22 (1)
(2)
(1) (2)

2
=

3
2 [K] =
2
0
0
0 0 0
0 0
0 04i2
2i2 4i2
2i2
1
2
3
1 2 3
单元定位向量 描述了单元两种编码(总码、局部码)之间的对应关系。
单元定位向量 定义了整体坐标系下的单元刚度矩阵中的元素在整体刚度矩阵中的具体位置,故也称为,单元换码向量,。
单元贡献矩阵是单元刚度矩阵,利用,单元定位向量” 进行,换码重排位,。
13
三,单元集成法的实施 (定位 累加)
[K]
1
2
3
1 2 3
0
0
0 0 0
0 0
0 0
[k] 1

1
0
0
0 0 0
0 0
0 0
4i1 2i1
2i1 4i1
1 2 3
1
2
3
[k] 2

2
4i1
2i1 4i1
2i1 0
0
0 0 0
2i2
2i2 4i2
4i1+4i2
1 2 3
1
2
3
( 1)将 [K]置零,得 [K]=[0];
( 2)将 [k]?的元素在 [K]中按 {?}?定位并进行累加,得 [K]=[K]?;
( 3)将 [k]?的元素在 [K]中按 {?}?定位并进行累加,得 [K]=[K]?+[K]?;
按此作法对所有单元循环一遍,最后即得整体刚度矩阵 [K]。
14
1 2
i1 i2 i3
3
1 2 3 0?1?2?3
0= 0
( 1)结点位移分量总码
( 2)单元定位向量

1
=

2
1
2
=

3
2
3
=

0
3( 3)单元集成过程
[k] = 4i12i
1 4i1
2i11 1
2
21
[k] = 4i22i
2 4i2
2i22 2
3
32
[k] = 4i32i
3 4i3
2i33 033
0
[K] =
1 2 3
1
2
3
0
0
0 0 0
0 0
0 0
4i1
2i1
2i1
2i2
2i2 4i2
4i1
4i2+4i3
+4i2
例,求连续梁的整体刚度矩阵。
15
四、整体刚度矩阵 [K] 的性质
( 1)整体刚度系数的意义,Kij-?j=1 (其余?=0)时产生的结点力 Fi
( 2) [K]是对称矩阵
( 3)对几何不变体系,[K]是可逆矩阵,如连续梁
i1 i2
1?2?3
F1 F2 F3
{F}=[K]{?}
{?}=[K]-1{F}
( 4) [K]是稀疏矩阵和带状矩阵,如连续梁
1?2?3F1 F2 F3
1 2 3 n
nFn?n+1Fn+1
0
0
0 0 0
0 0
0 0
0
0
0 0 0
0 0
0 0
0
0
0 0 0
0 0
0 0
0
0
0 0 0
0 0
0 0
1
3
2
1
n
F
F
F
F
1
3
2
1
n
4i1
2i1
2i1
2i2
2i2 4i2+4i3
4i1+4i2
4in
2i3
2in
16
§ 13-5 刚架的整体刚度矩阵思路要点,( 1)设各单元已形成了整体座标系下的单元刚度矩阵;
e[k]( 2)各 经由 e{?} 进行累加集成 [K]。
与连续梁相比,(1)各单元考虑轴向变形 ; (2)每个刚结点有三个位移 ;
(3)要采用整体座标 ; (4)要处理非刚结点的特殊情况 。
一、结点位移分量的统一编码 —— 总码
A
B
C x
y
1
2 3
0
0 4
0
0
0
结点位移总码
{?} =[?1?2?3?4 ]T
规定:
对于已知为零的结点位移分量,其总码均编为零。
=[uA vA?A?C ]T
整体结构的结点位移向量为:
相应地结点力向量为:
= [XA YA MA MC ]T
{F} = [F1 F2 F3 F4 ]T


17
x
(1)
(2) (3) (5) (6)
x
(2) (3)
(5)
(6)
单元结点位移分量 局部码二、单元定位向量单元? 单元?局部码?总码 局部码?总码
( 1)? 1
( 2)? 2
( 3)? 3
( 4)? 0
( 5)? 0
( 6)? 4
( 1)? 1
( 2)? 2
( 3)? 3
( 4)? 0
( 5)? 0
( 6)? 0

0
0
0
3
2
1

4
0
0
3
2
1
三、单元集成过程


A
B
C x
y
1 2 3 0
0 4
0
0
结点位移总码②

0
(4)
(1)
(4)
18
1A
B
C
2
x
y
1
2 3
0
0 4
0
0
0

4
0
0
3
2
1
1

0
0
0
3
2
1
2
1
2
3
4
[K]=
1 2 3 4
0
0 0 0
0 0
0
0
0
0
0 0
0 0
0
0
1[k] =
0
0
0 0 0
0 0
0 0
0
0
0 0 0
0 0
0 0
0
0
0 0 0
0 0
0 0
0
0
0 0 0
0 0
0 0
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
1 2 3 0 0 4
1
2
3
0
0
4
11 12 13
21 22 23
31 32 33
61 62 63 66
16
26
36
11 12 13
21 22 23
31 32 33
2[k]
1 2 3 0 0 0
1
2
3
0
0
0
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
=
19
四、铰结点的处理
[K]
求单元常数
{?}
[T]
单元刚度矩阵程序设计框图(局部:集成整体刚度矩阵)
1 1
2 2
刚结点,变形连续,
截面 1和截面 2具有相同的结点位移。
铰结点,部分变形连续,
截面 1和截面 2具有相同的结点线位移;而其角位移不相等。
20
1
2 3
A
B D
x
y
0
00
1
2 3
4
5 6
C1 C24
5
7
0
00
T654321
1
T000321
2
T000754
3
结点位移分量总码结点 C1 [ 4 5 6 ]
结点 C2 [ 4 5 7 ]
单元定位向量
1[k]
=
1 2 3 4 5 6
2[k]
=
1 2 3 0 0 0
1
2
3
0
0
0
1
2
3
4
5
6
21
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
T654321
1
T000321
2
T000754
3
1[k]
=
1 2 3 4 5 6
1
2
3
4
5
6
2[k]
=
1 2 3 0 0 0
1
2
3
0
0
0
3[k]
=
4 5 7 0 0 0
4
5
7
0
0
0
[K]=
1 2 3 4 5 6 7
1
2
3
4
5
6
7