BSBOBPBZBUBQBTBSBOBRBZBUBQBYBXBWBVBN
COC1BRCSA6AHAYC2 B4APBRCSA6BGB2
B4BEBDBL B8B1B2BJBBB6
BIA0 BAB3BMBF
1. BAAD I(y)=
integraltext
b
a
f(x, y)dx.
(1)I(y)? [c, d]CQC6DJARAGB3D5BPCW f(x, y)? [a, b;c, d]CQC6DJA1
(2)I(y)?[c, d]CQC0D7CHI
prime
(y)=
integraltext
b
a
f
y
(x, y)dxARAGB3D5BPCWf(x, y),f
y
(x, y)
? [a, b;c, d]CQC6DJA1
2. BAAD F(y)=
integraltext
b(y)
a(y)
f(x, y)dx.
(1)F(y) ? [c, d] CQC6DJARAGB3D5BPCW f(x, y) ? [a, b;c, d] CQC6DJA4
a(y),b(y)? [c, d]CQC6DJCHa lessorequalslant a(y) lessorequalslant b, a lessorequalslant b(y) lessorequalslant b.
(2)F(y) ? [c, d] CQC0D7CH F
prime
(y)=
integraltext
b(y)
a(y)
f
y
(x, y)dx + f[b(y),y]b
prime
(y) ?
f[a(y),y]a
prime
(y) ARAGB3D5BPCW f(x, y),f
y
(x, y) ? [a, b;c, d] CQC6DJA4D6CT?
[c, d]CQ b
prime
(y),a
prime
(y)AL?CH a lessorequalslant a(y) lessorequalslant b, a lessorequalslant b(y) lessorequalslant b.
3. BAADBKB3C0BQBHA1
integraltext
d
c
dy
integraltext
b
a
f(x, y)dx =
integraltext
b
a
dx
integraltext
d
c
f(x, y)dyARAGB3D5BPCWf(x, y)?[a, b;c, d]
CQC6DJA1
B5A0 B0BKBCB9BHBG
1. F(y)=
integraltext
y
2
y
e
?x
2
y
dx, CJ F
prime
(y).
BUA5A8D8 e
?x
2
y
?R×RCQC6DJA4D2A5
F
prime
(y)=
integraltext
y
2
y
(?x
2
)e
?x
2
y
dx + e
?y
5
·2y ? e
?y
3
·1
=2ye
?y
5
? e
?y
3
?
integraltext
y
2
y
x
2
e
?x
2
y
dx. square
2. F(y)=
integraltext
y
0
(x + y)f(x)dx, CDAS f(x) CWC0D7ARA4CJ F
primeprime
(y).
1
BUA5A8D8 (x + y)f(x)?R×RCQC6DJA4D2A5
F
prime
(y)=
integraltext
y
0
f(x)dx +(y + y)f(y)
=
integraltext
y
0
f(x)dx +2yf(y).
F
primeprime
(y)=
integraltext
y
0
0dx + f(y)+2f(y)+2yf
prime
(y)
=3f(y)+2yf(y). square
3. F(y)=
integraltext
1
0
ln
radicalbig
x
2
+ y
2
dx,AOBSBND1BKB3CJF(y),F
prime
(0)A4A9AUC34BN
D1 F
prime
(0),ABA1AMBTBCALCMDFA1
BUA5AN y negationslash=0CTA4
F(y)=xln
radicalbig
x
2
+ y
2
|
x=1
x=0
?
integraltext
1
0
x
2
x
2
+y
2
dx
=ln
radicalbig
1+y
2
?
integraltext
1
0
(1?
1
x
2
+y
2
)dx
=ln
radicalbig
1+y
2
? 1+y
integraltext
1
0
(
1
(
x
y
)
2
+1
)d
x
y
=ln
radicalbig
1+y
2
? 1+y arctan
1
y
.
F(0) =
integraltext
1
0
lnxdx = xlnx|
1
0
?
integraltext
1
0
dx
=0?lim
x→0
xlnx ?1=?1.
(∵ lim
x→0
xlnx = lim
x→0
lnx
1
x
= lim
x→0
1
x
?1
x
2
=0)
D2A5
F(y)=
?
?
?
?1,y=0,
ln
radicalbig
1+y
2
?1+y arctan
1
y
,ynegationslash=0.
AJC4CFATAPAHA5C5A9AWA0ACAOCZARAUA7A4D9C9C0BND1
F
prime
+
(0) = lim
y→+0
F(y)? F(0)
y
= lim
y→+0
[
ln(1 + y
2
)
2y
+ arctan
1
y
]=
π
2
;
F
prime
?
(0) = lim
y→?0
F(y)? F(0)
y
= lim
y→?0
[
ln(1 + y
2
)
2y
+ arctan
1
y
]=?
π
2
.
B9 F
prime
(0) ACAL?A1CR f(x, y)=ln(x
2
+ y
2
), AF f
y
(x, y)=
2y
x
2
+y
2
, f BF f
y
AX
AIBZ? [0,1;?∞,+∞]CQACC6DJA4ACC8AVAUC34ARD5BPA1CPBCD0D3B8CVBND1
F
prime
(0) =
integraltext
1
0
f
y
(x, y)|
y=0
dx =
integraltext
1
0
dx =0BXBIAHDDAMDBA1BMCUCWAWACAOCZA3AC
CBD3A9AUC3 4 ASCJAOB8CVBND1A1A8AI?BND1CEA8DGDCA1AMAUC3 4 ARD5BPA1
square
2
6.(2)
integraltext
π
0
ln(1? 2αcosx + α
2
)dx (|α| < 1).
BUA5CRf(x, α)=ln(1?2α cosx+α
2
),I(α)=
integraltext
π
0
ln(1?2α cosx+α
2
)dx.
A8D8 1 ? 2αcos x + α
2
greaterorequalslant 1+α
2
? 2|α| =(1?|α|)
2
> 0, D2A5 f(x, α) ?
R× (?1,1) CQC6DJA4CH f
α
(x, α)=
?2cosx+2α
1?2αcos x+α
2
?R× (?1,1) CQC6DJ. C5A9
AUC32 C0AQA5
I
prime
(α)=
integraltext
π
0
?2cosx+2α
1?2αcosx+α
2
dx
=
1
α
integraltext
π
0
(1 +
α
2
+1
1?2αcosx+α
2
)dx
=
π
α
?
1?α
2
α(1+α
2
)
integraltext
π
0
1
1+
?2α
1+α
2
cosx
dx
=
π
α
?
2
α
arctan(
1+α
1?α
tan
x
2
)|
x=π
x=0
=
π
α
?
2
α
·
π
2
=0.
ADCW I(α)=CA2?CZA3A4AW I(0) = 0,B9 I(α)=C =0. square
7. C5A9
integraltext
b
a
x
y
dy =
x
b
?x
a
lnx
CJ
integraltext
1
0
sin(ln
1
x
)
x
b
?x
a
lnx
dx.
BUA5ACB0CR 0 <a<b, A8D8 sin(ln
1
x
)x
y
? [0,1;a, b] CQC6DJA2AUA6?
{0}×[a, b] CQAUA7 sin(ln
1
x
)x
y
D8 0A3A1D2A5
integraltext
1
0
sin(ln
1
x
)
x
b
?x
a
lnx
dx
=
integraltext
1
0
sin(ln
1
x
)dx
integraltext
b
a
x
y
dy
=
integraltext
b
a
dy
integraltext
1
0
sin(ln
1
x
)x
y
dx
AXA9BHx = e
?t
C0AQ
integraltext
1
0
sin(ln
1
x
)x
y
dx
=
integraltext
+∞
0
e
?(y+1)t
sintdt( AUA5AJCWA4B6BDADBBA7BKB3)
=
1
1+(1+y)
2
[?(y +1)sint ? cost]e
?(y+1)t
|
t=+∞
t=0
=
1
1+(1+y)
2
.
ADCW
integraltext
1
0
sin(ln
1
x
)
x
b
?x
a
lnx
dx
=
integraltext
b
a
1
1+(1+y)
2
dy = arctan(1 + y)|
b
a
= arctan(1 + b) ?arctan(1 + a)
= arctan
b?a
1+(1+b)(1+a)
. square
3
B4BEAZBL B8B1B7BJBBB6
BIA0 BAB3BMBF
A7AGATA2A0BWDACIBBA7BKB3
integraltext
+∞
a
f(x, y)dxARDFARA1
1. A4AQCXC7DFA1
AF
integraltext
+∞
a
f(x, y)dx BAAD y ∈ [c, d] D8A4AQCXC7ARA4CPBC ?ε>0,?A
0
, AN
A
prime
,A>A
0
CTA4?y ∈ [c, d],AB|
integraltext
A
prime
A
f(x, y)dx| <εBJ|
integraltext
+∞
A
f(x, y)dx| <ε.
2. A4AQCXC7ARCCAUA1
CPBCAL? F(x), CUAQ|f(x, y)| lessorequalslant F(x),?a lessorequalslant x<+∞,?c lessorequalslant y lessorequalslant d. CH
integraltext
+∞
a
F(x)dx CXC7A4AF
integraltext
+∞
a
f(x, y)dxBAAD y ∈ [c, d]D8A4AQCXC7ARA1
3. C6DJDFA1
integraltext
+∞
a
f(x, y)dxCWy ∈ [c, d]CQARC6DJBECZARAGB3D5BPCWf(x, y)?[a,+∞;c, d]
CQC6DJCH
integraltext
+∞
a
f(x, y)dxBAAD y ∈ [c, d]D8A4AQCXC7A1
4. BKB3BQBHAJDIA1
integraltext
d
c
dy
integraltext
+∞
a
f(x, y)dx =
integraltext
+∞
a
dx
integraltext
d
c
f(x, y)dy ARAGB3D5BPCW f(x, y) ?
[a,+∞;c, d]CQC6DJCH
integraltext
+∞
a
f(x, y)dxBAAD y ∈ [c, d]D8A4AQCXC7A1
5. C0AODFA1
I(y)=
integraltext
+∞
a
f(x, y)dx ? [c, d] CQC0AOCH I
prime
(y)=
integraltext
+∞
a
f
y
(x, y)dx AR
AGB3D5BPCW f(x, y),f
y
(x, y) ? [a,+∞;c, d] CQC6DJA4
integraltext
+∞
a
f(x, y)dx AL?CH
integraltext
+∞
a
f
y
(x, y)dxBAAD y ∈ [c, d]D8A4AQCXC7A1
B5A0 B0BKBCB9BHBG
4.(1).
integraltext
+∞
1
x
α
e
?x
dx, a lessorequalslant α lessorequalslant b.
BUA5AN a lessorequalslant α lessorequalslant b CH x greaterorequalslant 1CT 0 <x
α
e
?x
<x
b
e
?x
A8D8
lim
x→+∞
x
b
e
?x
1
x
2
= lim
x→+∞
x
b+2
e
x
=0
D2A5 x
b
e
?x
= o(
1
x
2
)(x → +∞), AW
integraltext
+∞
1
1
x
2
dx CXC7, B9
integraltext
+∞
1
x
b
e
?x
dx CXC7.
AKAWBKB3
integraltext
+∞
1
x
α
e
?x
dx ?CKBOa lessorequalslant α lessorequalslant b CQA4AQCXC7.
(3)
integraltext
+∞
?∞
e
?(x?α)
2
dx
(i)a<α<b (ii)?∞ <α<+∞
4
BUA5(i) AN a<α<bCTA4CLALCZ R, CUAQ?R<a<b<R, ADCWAVADA4
CG a<α<b, AB|α| <R, AKAWAB
0 <e
?(x±α)
2
<e
?(x?R)
2
,?x greaterorequalslant R,?α ∈ (a, b).
A8D8BKB3
integraltext
+∞
R
e
?(x?R)
2
dxCXC7A4BYA4AQCXC7CCAAAYANA4
integraltext
+∞
R
e
?(x±α)
2
dxBAAD
a<α<bA4AQCXC7A4D2A5
integraltext
+∞
?∞
e
?(x?α)
2
dx =
integraltext
+∞
0
e
?(x+α)
2
dx+
integraltext
+∞
0
e
?(x?α)
2
dx
BAAD a<α<bA4AQCXC7A1
(ii)AN?∞ <α<+∞,D9C9C0A5AMCA
integraltext
+∞
0
e
?(x?α)
2
dx BAAD?∞ <α<
+∞B1A4AQCXC7A1AVADCNA6B7AUAR A>0AB
lim
α→+∞
integraldisplay
+∞
A
e
?(x?α)
2
dx = lim
α→+∞
integraldisplay
+∞
A?α
e
?t
2
dx = lim
α→+∞
integraldisplay
+∞
?∞
e
?t
2
dx =
√
π.
CL ε
0
=
√
π/2,?A>0, CL A
0
= A +1,AACQCYBLDEC0ANAL? α
0
> 0, CU
AQ
|
integraldisplay
+∞
A
0
e
?(x?α
0
)
2
dx ?
√
π| <ε
0
?|
integraldisplay
+∞
A
0
e
?(x?α
0
)
2
dx| >
√
π
2
= ε
0
AAA4AQCXC7AUA7ARAZDHCYC0AQ
integraltext
+∞
0
e
?(x?α)
2
dx BAAD?∞ <α<+∞B1A4AQ
CXC7A1BVAW
integraltext
+∞
?∞
e
?(x?α)
2
dxBAAD?∞ <α<+∞B1A4AQCXC7A1square
(5)
integraltext
+∞
0
e
?αx
sinxdx (α>0)
BUA5AVADCNA6 A>0, AB
lim
α→0
integraldisplay
+∞
A
e
?αx
sin xdx = lim
α→0
e
?αA
(?α sinA ? cosA)
α
2
+1
= ?cos A
D4AAASA4AN A =(2k +1)π(k CWB1B5AKCZ) CT
lim
α→0
integraldisplay
+∞
(2k+1)π
e
?αx
sin xdx = ?cos(2k +1)π =1.
D2A5CL ε
0
=
1
2
> 0,?A>0, CL A
0
=(2[A]+1)π>A,AACQCYBLDEARAUA7C0
ANA4AL? α
0
, CUAQ
|
integraldisplay
+∞
A
0
e
?α
0
x
sinxdx ? 1| <
1
2
?|
integraldisplay
+∞
A
0
e
?α
0
x
sinxdx| >
1
2
= ε
0
AAA4AQCXC7AUA7ARAZDHCYC0AQ
integraltext
+∞
0
e
?αx
sinxdx BAAD α>0 B1A4AQCXC7A1square
5